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God not only play dice, but
sometimes throws them,
where they cannot be seen.
(Stephen Hawking)
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Chapter 1

INTRODUCTION

Most of the processes occurring in Nature share two properties:
they are nonlinear and they are affected by stochastic noise. Sci-
entists usually seek to neglect those facts because the theoretical
modeling and description can get rather complicated. A linear, de-
terministic theory is preferred instead and often sufficient. But a
lot of features and phenomena can not be captured by that.

Due to the enormous increase of computational power and the
development of new physical fields, the treatment of stochastic,
nonlinear systems became easier to handle and, hence, very popular.
Special attention has been paid to effects where the stochastic noise,
or fluctuations, do not degrade the performance of a system as it is
often the case, but instead provides a useful and necessary tool to
perform signal detection, enhance signal transmission, synchronize
systems, form patterns and structures, etc. This can be the case if
the system has nonlinear characteristics.

Nonlinearity means that the underlying dynamic (differential)
equations are nonlinear in the independent variable, i.e., their typ-
ical solutions can not be expressed as a linear combination of ele-
mentary solutions. The branch of physics studying those systems
is called Complex Systems, Nonlinear Dynamics or Dynamical Sys-
tems. The next section provides a brief overview over this branch.

Stochasticity means that random fluctuations can occur bias-
ing the system in a probabilistic manner. Noise affects all kind of
natural systems, often deteriorating the predictability of the future
system state. The study of noise in physical, chemical and biolog-
ical systems has been performed in branches like Non-equilibrium
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Statistical Physics (Mechanics) and (Applied) Stochastic Processes.
The present treatise considers stochastic effects in nonlinear sys-

tems as a model of noise in physical and other systems.
In the following, short introductions are given to both fields,

Complex Systems Theory and Stochastic Processes. Since the pre-
sented work focuses mainly on details of stochastic processes, the
reader may consider the next Sec. 1.1 as an interesting trip into a
modern discipline of physics, describing the more profound frame-
work the presented phenomena should be seen in context to.

1.1 Complex Systems Theory

The study of complex systems (which not necessarily have to be
complicated) can mainly be divided in

1. the analysis of problems continuous in time and/or space, i.e.,

• nonlinear (partial) differential equations and

2. the analysis of problems discrete in time and/or space, e.g.,

• discrete mappings, (complex1) number iterations

• cellular automata.

Complex hereby does not necessarily mean that the systems have a
very high number of degrees of freedom. Complex is rather meant
as a distinction from simple systems which can sufficiently be de-
scribed by linear mathematics. An overview on literature (journals,
conference proceedings, textbooks and important papers) on this
topic can be found in a Resource Letter at [1].

1.1.1 Continuous cases

The study of nonlinear differential equations arouse more than a
century ago with problems of oscillations in classical mechanics and
electric circuits (Duffing oscillator [2], van der Pol’s equation [3]).

1Here, complex is meant in the mathematical sense as a linear combina-
tion of real and imaginary numbers, in contrast to ”complex” in the physical
terminology of complex systems.
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Figure 1.1: Chaotic oscillation: Simulation of the location X as a func-
tion of time of the nonlinear Duffing oscillator.

Driven and damped oscillation equations in various nonlinear
potentials exhibited qualitatively new kinds of solutions, such as a
dependence between amplitude and frequency of the oscillations.
The analysis of the evolution of the trajectories in the state (phase)
space discovered a topology which is more complex and exhibits
new qualitatively distinct features than in simpler linear problems.
An example for chaotic oscillation is given in Fig. 1.1.

Since a differential equation of n-th order can always be ex-
pressed as a system of n coupled differential equations of 1st order,
n is called the dimension of the state space.

Coupled ordinary linear differential equations already exhibit a
number of interesting behavior of the movement of the trajectories,
such as stable and unstable fix-points (nodes) and stable and un-
stable foci, where the trajectory will be attracted (spiral in towards
the fixpoint) or repelled (spiral away from the fixpoint).

Others, so called saddles (hyperbolic points) attract/repel tra-
jectories depending on their initial condition. In that case there is
always one trajectory separating those regions and therefore called
the separatrix. There may exist other singular points too, so called
centers (elliptic points), where the trajectories follow closed ellipses
around them. Those points are neither attractive nor repulsive.
Which of the above mentioned behaviors eventuate depends on the
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dimensions and parameters of the system determining the signs and
values of the (complex) eigenvalues.

Since the stability analysis of nonlinear solutions can (often) be
carried out by a linearization around the singular points, results for
the linear problems can be of use for the general nonlinear case as
well.

However, in the case of nonlinearities one can observe phase
transitions of the first and second kind in only one dimensional
problems, e.g., by studying a single nonlinear differential equation of
first order. An example is the kinetic description of an autocatalytic
reaction. In two dimensions bifurcations can occur. Bifurcations
are qualitative changes of the topology of the state space, caused
by parameter variation (see Fig. 1.3). For example, a stable focus
can become unstable (Hopf-bifurcation).

Figure 1.2: Different kinds of solutions in phase space of the nonlinear
Duffing oscillator as a result of different initial conditions and param-
eters. The inner closed curve on the right hand side is the analogy
to the undamped harmonic oscillator, whereas the spiral on the left
hand side corresponds to the damped case. The enveloping curve is a
characteristic example of a nonlinear oscillation.
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Figure 1.3: Bifurcation diagram of the nonlinear Duffing’s oscillator.
As a control parameter A is varied, the topology of the state space is
changed, leading to qualitatively different types of solutions. The ex-
ample shows the well studied period-doubling route to chaotic behavior
which occurs at a parameter value of about A = 5.57.

Considering three dimensions, quasiperiodic solutions called tori
can determine the ultimate destiny of the trajectories and a phe-
nomena known as chaos can occur.

In general, chaos is possible in autonomous differential equations
if at least three coupled equations are present containing at least
one nonlinearity. In case of non-autonomous system already two
(!) coupled equations are sufficient to observe chaotic behavior.
This emphasizes the importance of the systematic study of complex
systems and their specific solutions.

There are several definitions of chaos all having one feature in
common: the sensitivity of the systems development to a slight
change in the initial conditions, which can be measured by the
Ljapunov exponent.

However, chaos does not mean disorder in a stochastic sense.
The movement of the trajectory is absolute deterministic, although
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the plot of two trajectories starting nearby will reveal an exponen-
tial growth of their distance (at least for a while), demonstrating
the sensitivity to the initial conditions (see Fig. 1.4). But, in many
cases the trajectory will never leave a bounded region and end up
in a so called strange attractor (Figs. 1.4 and 1.5).

Although the path of a trajectory might be difficult to predict,
the shape of the strange attractor will always be the same, e.g.,
showing the same fractal (self similar) properties as shown in Figs.
1.5 - 1.7.

In parameter space different routes to chaos have been found.
One of the most interesting one is the so called period doubling
which is displayed in Fig. 1.3. At certain parameter values the
system oscillates with a fixed period while changing the parame-
ter suddenly leads to a doubling of this period. This can happen

Figure 1.4: The sensitivity of the path of a trajectory in state space to
its initial condition is what is called chaos in physics. Two trajectories
starting very close to each other (her indistinguishable in the small
circle), will separate exponentially from each other and finally end up
in different regions of the state space. The example, provided here, is
taken from the so called strange attractor of the meteorological Lorenz
model and suggests the shape of a butterfly. See also Fig. 1.5.
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Figure 1.5: The Lorenz attractor as an example of a so called strange
attractor. See also Fig. 1.4

when a limit cycle becomes unstable while at the same time two
stable limit cycles arise (bifurcation). A further changing of the bi-
furcation parameter doubles the period again, and so on, until the
system ends up in a chaotic region. The ratio of two consecutive
parameter values where the period doubles has been found to be a
universal scaling constant [4], [5]. If the above mentioned instability
continuous as a branch in the parameter space and hits a chaotic
region, one dramatically calls this an explosion of chaos or a crisis.

Examples of the mentioned (and to be mentioned) mechanisms
and phenomena can be found in every field of every scientist.

The study of population dynamics in ecology, i.e., the coupled
processes of growth and decay of different species concentrations,
has played a key role in the development of the field of complex
systems. The spread of epidemics, evolutionary processes, solar
systems dynamics or model deduction based on the analysis of time
series (such as financial data or electrocardiogram sequences) are
further examples.

One important consequence of nonlinearity in coupled differen-
tial equations is a principle studied by Hermann Haken in laser
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physics; it has been called slaving principle. It requires a set of
equations (variables) which evolve within different characteristic
time scales in a way that the fast varying functions can be elimi-
nated adiabatically. The result is that the time course of one vari-
able (master mode) determines the evolution of the others (slave
modes). Thus one can say that the system is ”organizing” itself
into a certain mode which for this reason is called self-organization
or synergetics [6], [7].

But nonlinear effects are of course not restricted to temporal
phenomena only. Considering the well studied reaction-diffusion
equation one can observe spatial pattern formations. All what is
needed for this observation is a diffusion besides nonlinear terms.
A hydrodynamical example is the coupling between convective mo-
tion and thermal conduction in a liquid heated from below. At a
certain value of a system parameter a hexagonal structure will ap-
pear on the surface, indicating a regular cellular structure of the

Figure 1.6: A typical example of the properties of a strange attractor.
Here, the fractal Poincaré section of the strange attractor of the Duffing
oscillator.
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Figure 1.7: Enlargement of the Poincaré section of the strange attrac-
tor from Fig. 1.6 shows fractal properties.

heat transportation within the liquid (Rayleigh-Bénard instability
[8], Lorenz model [9], Fig. 1.5).

Other examples can be found in plasma physics or chemical
reactions such as the Zhabotinsky-Belusov reaction. Here, concen-
trations in a two dimensional layer vary with space and time, form-
ing wave patterns for example as spirals [10]. Nonlinear waves are
very interesting solutions of nonlinear partial differential equations.
They do, for example, not show interference, i.e., the superposi-
tion principle is not valid here. Nonlinear waves called solitons
are stable to perturbations and can interact like particles, i.e., with
conservation of momenta and energy. Therefore a soliton can travel
infinitely long without losing the particular shape.

One of the most simple nonlinear dynamics is given by the free
motion of a particle in a bistable double-well potential, providing
two stable solutions separated by an unstable one. Depending on
the initial condition the particle will come to rest at either of the
minima. Contrary, when the particle is forced by deterministic and
stochastic forces, unexpected phenomena like dynamic stochastic
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resonance can occur, as it is introduced in this thesis in Chapt. 2.1
and 2.4.

1.1.2 Discrete cases

Often the complex behavior of a system can most easily be stud-
ied by discretization in space or time. Using the Newton-Raphson
method, for example, solutions of nonlinear equations can be found.
However, spatially and temporarily discrete problems also arise nat-
urally such as the coupled behavior of single elements often studied
as cellular automata or the discrete time analysis of iterative expres-
sions such as the logistic equation describing populations of succes-
sive generations. The latter one has become famous since despite
the simple mathematical formulation a very rich behavior could
be found, verifying experimental data such as the periodic varia-
tions in the catch reports of the Hudson Bay Company from 1850
to 1930 [11]. Feigenbaum has studied the abstract formulation in
great detail discovering periodic and chaotic behavior in the system
depending on the parameters. While the parameter is changed, the
qualitative behavior changes leading to the Feigenbaum scenario of
bifurcations. The universal scaling law, mentioned above, has been
observed for the constant ratio of consecutive bifurcation parame-
ter values [4], [5]. Many other maps have been studied such as the
Poincare map or the Henon map [12] showing fractal properties in
the corresponding attractors.

The fact that already one dimensional problems can give rise
to chaotic solutions in case of discrete nonlinear systems underlines
the importance of the detailed study of this field.

Simple rules can supply a possibility to create patterns that seem
rather complicated. Well known are the fractals of the Cantor-set,
the Koch-curve and the Sierpinsky-gasket [13]. Cellular automata
in different dimensions show similar behavior. A cellular automata
can be understood as a set of elements on a grid whereby the time
evolution of the elements depend on the state of the neighbors. Very
simple update rules for the next time step can lead to surprisingly
complex structures as shown in Fig. 1.8. Examples and applications
for the studied models can be found in all kinds of networks.

As mentioned above, a discrete description can arise from the
discrete nature of the studied objects. Examples modeled and stud-
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Figure 1.8: An example for a discrete complex system: Spatio-
temporal structure formation in a one-dimensional cellular automaton.
Very simple interaction rules between adjacent cells can lead to complex
and fractal structures.

ied in Chapt. 3.1 of the present thesis are traffic systems of cars
and neural spikes which are obviously discrete in their nature.

1.2 Stochastic Processes

1.2.1 Mathematics of stochastic processes

A stochastic process can be defined as a process Y (X, t) depending
on a random number X. This is the time dependent case of a more
general definition of a random function. As in the previous sec-
tions the time dependence can be of discrete or continuous nature.
The capital letters X and Y stand for random variables, i.e., an
ensemble of their concrete realizations which shall be denoted by
x and y. The probability that the realization y eventually will oc-
cur is described by a probability distribution function P (y). Often
the term probability density p(y) is used. Then

∫ y2

y1

p(y)dy gives

the probability to find a value y within the interval (y1, y2) in the

11



continuous case.
A discrete process Y develops stepwise (..., yn−1, yn, yn+1, ...) and

is described by the probability P (yn) that yn appears at time tn.
The dependence of yn on the previous values of Y is specified by
the conditional probability P (yn|yn−1, yn−2, yn−3, ..), which is the
probability that yn appears at time tn supposed that the realiza-
tion of Y at time tn−1 was yn−1, at time tn−2 was yn−2 and so on.
Defining the joint probability P (yn, yn−1) as the probability that yn
appears at time tn and yn−1 at time tn−1 one can write down the
basic expression

P (yn, yn−1) = P (yn|yn−1)P (yn−1) , (1.1)

known as Bayes’ rule. In case that yn does not depend on yn−1, i.e.,
P (yn|yn−1) = P (yn), it follows that

P (yn, yn−1) = P (yn)P (yn−1) , (1.2)

which is the most fundamental law in probability theory and means
statistical independence of the events yn and yn−1.

1.2.1.1 Processes without memory

If the state yn of a process does not depend on the entire past, i.e.,
only on a finite number k of previous steps this process is called a
Markov process and the conditional probability reduces according
to

P (yn|yn−1, yn−2, yn−3, .., yn−∞) = P (yn|yn−1, yn−2, yn−3, .., yn−k).
(1.3)

Note that this is a general definition and defines a Markov process
of kth order. Most common in the literature is a definition which
considers only the previous time step, i.e., k = 1. This leads to

P (yn|yn−1, yn−2, yn−3, .., yn−∞) = P (yn|yn−1) . (1.4)

This definition is indeed closer to Markov’s original reflections from
1911 [14]. The process is entirely determined by the transition
probability P (yn|yn−1) and can successively be constructed. Except
for the knowledge of the last step this process has no memory.
This is the Markov property and describes the class of stochastic
processes which is the most important one in Nature:
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Markov Process Examples

• Radioactive Decay: The stochastic number of nuclei changes
according to the transition probability P (n,M, t) where M
and n are the number of pre-reaction nuclei at time 0 and time
t respectively. This discrete process does obviously depend
on the number of present nuclei only and not on the previous
past.

• Chemical Reactions: The situation for simple chemical re-
actions involving the transition between two states is similar
to the radio-active decay. Again the transition rate is pro-
portional to the number of pre-reaction atoms or molecules,
respectively.

• Spin Relaxation Model: Considering a two state system for
a single spin, i.e., two possibilities (+ and -) for the direc-
tions of a spin one can write down the stationary transition
probability and describe a system of spins as it relaxes to the
equilibrium.

• Random Walk: This is a discrete model useful to describe
Brownian motion. Here the direction at each step does not
depend on the preceding steps. Brownian motion itself is the
most important example of a Markov process in physics.

• Poisson Process: This is a point process with independent
events on a real (time) axis. The possibilities of application
in physics span over a wide range: the counts in a Geiger
counter, the arrivals at the anode of a vacuum tube or the en-
ergies of cosmic ray particles [15]. Other examples are learn-
ing processes in neural networks [16] or stochastic resonance
in neuron models [17]. The Poisson process is a special case
of a generation-recombination process having a range of in-
tegers n which are occupied by the probability pn. The time
evolution of probability density functions is described by so
called Master equations. In this case by

ṗn = ν(pn−1 − pn) . (1.5)

13



Thus the time dependent probability density for the Poisson
process is given by

pn(t) =
(νt)n

n!
exp (−νt) . (1.6)

It can be shown that ν is the mean value (rate) of the time
gap between successive Poisson events as well as the variance.

As the reader will see later in this treatise, the Poisson pro-
cess with varying mean rates ν will play a major role in the
investigation of a stochastic traffic model.

To describe the time evolution of a stochastic process, two differ-
ent, but mathematically equivalent, formalisms are common in use.
The first is the Fokker-Planck equation [18], which is based on the
more general Master equation. The second formalism is based on
the Langevin equation. While the Fokker-Planck equation is a par-
tial differential equation for the evolution of the probability density
distribution, the Langevin equation is a differential equation for
the random variables. Depending on the physical situation, the
stochastic variables can enter the equation in additive or multi-
plicative terms. In this treatise we will see an example of either
possibility.

As an example for a the Lagrange equation one can take a look
at the equation of motion for a Brownian particle at position x

mẍ = −αẋ+ ξ(t) , (1.7)

with mass m, friction constant α and the random force ξ(t) having
a mean value < ξ(t) >= 0.

The two mentioned formalisms are equivalent and suitable for
linear problems but have to be handled carefully in nonlinear situ-
ations. A major problem is the integration of a stochastic (partial)
differential equation since the added stochastic process ξ(t) enters
the equations as a random number sequence y(t = nε), n ∈ N of dis-
crete nature 2. While integrating over a small time interval (t, t+ε),
the question arises which value of y should be chosen. There are
two main approaches to the problem proposed by Itô (y(t)) and
Stratonovic ( 1

2
(y(t) + y(t + ε))). For an analysis of these problems

see [15].

2The discrete character is a consequence of the Kramers-Moyal expansion
[15] of the corresponding Master equation.
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1.2.2 Stochastic processes in physics

Our most fundamental approach to describe Nature, the Quantum-
theory, is a probabilistic one containing unpredictability at its deep-
est level. The stochasticity of the radio-active decay, for example,
is a direct consequence of the quantum-mechanical formalism. Al-
though probabilities are the primary quantities which can be deter-
mined in Quantum mechanics, the macroscopic laws always appear
after integration (averaging) in Hilbert space.

This can be seen in analogy to the ensemble average in systems
with many degrees of freedom in classical mechanics, which creates
the basis for Statistical Physics3. Here one is able to deal with
high-dimensional systems with complicated inherent dependencies.

The most famous example is provided by the Brownian motion.
The force exerted by a very large number of molecules, acting on a
large particle is changing very fast and is practically impossible to
calculate using Newton’s equation of motion. On the other hand,
it is possible to average over small time intervals and reveal the
macroscopic properties of the system, such as the validity of the
damping law for the average velocity.

This is in fact the basic procedure. Considering different time
scales, one can average out the fast varying variables and obtain
equations for the remaining slow ones which establishes known
macroscopic laws, such as Ohm’s law or heat conduction. The
interesting feature of Nature is that those laws are described by
smooth functions, although they are based on the irregular micro-
scopic motion.

But it is clear that the macroscopic laws do not describe the
whole truth since they neglect the intrinsic fluctuations which ap-
pear as noise in many physical and biological systems [15].

In linear systems which are in equilibrium the random forces act
as fluctuations around a certain mean value, only. This has been
studied in equilibrium statistical mechanics and is well understood.
In contrast, the study of non-equilibrium statistical mechanics is

3The average of a high-dimensional system can be the average over an en-
semble (many different realizations of the same physical system) or the time
average of one of the realizations in case that they are the same. If so, one
calls the system ergodic. Ergodicity is the main assumption for equilibrium
statistical mechanics.
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relatively underdeveloped. A way to describe those systems is pos-
sible through the investigation of nonlinear stochastic dynamics,
which the central theme of this thesis. Identifying and understand-
ing nonlinear stochastic mechanisms and phenomena is a fruitful
challenge and promising source of knowledge for all kind of scien-
tific fields, especially solid state physics.

Figure 1.9: Brownian motion in two dimensions: fast varying, irreg-
ular, deterministic, microscopic forces acting “as random” on a meso-
scopic particle.

1.2.3 The power spectral density of noise

As introduced in subsection 1.2, stochastic processes are often char-
acterized by their probability distribution functions P (y). However,
the distribution of energy to the different frequencies ω = 2πf plays
a very important role in many physical processes and is described
by the power spectral density (PSD) S(ω). As with any time de-
pendent deterministic function, the Fourier transform can formally
be defined for a stochastic process too. Moreover it can be shown
quite easily, that the PSD for a stationary process is defined by the
Fourier transform F() of the autocorrelation function

Cy(t) y(t+τ)(τ) = lim
T→∞

1

2T

∫ T

−T

y(t) y(t+ τ) dt . (1.8)
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Using the relation between the PSD and the Fourier transform

S(ω) = lim
T→∞

1

2T
|F(C(τ))|2 , (1.9)

one can write

S(ω) = F(C(τ)) (1.10)

=
1

2π

∫ ∞

−∞

C(τ) exp(iωt) .

This is the well-known Wiener-Khintchine Theorem [19], [20].
Returning to the example of Brownian motion one can note that

the value of the force, acting on the Brownian particle is indepen-
dent on the position and velocity. Moreover the value of the force
itself is markovian, i.e., does not depend on earlier values. Thus
the autocorrelation function is a delta function:

Cξ(t) ξ(t+τ)(τ) = lim
T→∞

1

2T

∫ T

−T

ξ(t) ξ(t+ τ) dt (1.11)

= 2αkT δ(τ) .

The proportionality factor enters for consistency reasons with Eq.
(1.7) and the equipartition law

< m
ẋ2

2
>=

3

2
kT . (1.12)

Applying the Wiener-Khintchine theorem (1.10), it is now easy to
calculate the power spectral density of the force as

Sξ(ω) =
αkT

π
. (1.13)

Note that Sξ(ω) is a constant and does not depend on the fre-
quency ω. This means that the energy of the process is uniformly
distributed to all frequencies or colors (in analogy to light). There-
fore this is called white noise. Contrary to this mathematical result,
it is clear that there are physical arguments for a cut-off frequency
of the uniform spectrum. Otherwise the process would contain an
infinite amount of energy.

The result for the white noise is based on the fact that there is no
memory in the process and the correlation function of the random
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force is a delta function. However, this is not always the case.
Considering processes with relaxation times κ, usually containing
terms decaying as exp (−κt), one can find a PSD depending on ω
such as

S(ω) ∼ κ

κ2 + ω2
. (1.14)

This is called a Lorentzian spectrum and is one type of colored noise
in analogy to white noise.

1.2.3.1 1/f k noise

One type of noise is of special interest, since it appears surprisingly
often in a wide range of systems. This is a noise with a spectrum
shaped as

S(ω) =
C

ωk
, (1.15)

with C = constant and ω = 2πf . In case of k ≈ 1 it is referred to
as one-over-f-noise, flicker noise or pink noise. Figure 1.10 shows
several examples of simulated 1/f k noises for different k. The ve-
locity of Brownian motion, for example, corresponds to such noise
with k = 2.

A general overview of 1/f noise is provided by [21], [22] and [23].
As mentioned above, examples can be found in a lot of physical and
non-physical systems 4, as in solids [24]; electronic devices [25] - [27];
magnetic systems [28]; traffic flow [29], [172]; network traffic [30];
neuro systems [31], [176] - [178] and financial data [32].

Especially in solid state physics, many theories and models have
been developed and proposed to explain the 1/f -feature of residence
fluctuations [33], [34]. Based on a heuristic theory, 1/f noise can be
explained as the superposition of Lorentzians (Eq. (1.14)). Each
Lorentzian is produced by a relaxation process with a certain wait-
ing time distribution p(τ). In case of a thermally activated process
with τ = τ0 exp (E/kT ) the distribution p(τ) ∼ 1/τ arises naturally
and a noise spectrum close to 1/f is obtained. The problem con-
sists now of justifying the distribution, which is often assumed to
result from charge trapping. Random-walk models in systems con-
taining traps with broad distributions of activation energies have

4A nice bibliography on 1/fk noise can be found at
http://linkage.rockefeller.edu/wli/1fnoise/
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Figure 1.10: Simulated Gaussian noise sequences with different 1/f k-
shaped spectra.

successfully being used for that investigation [34]. Similar mecha-
nisms might be considered for the explanation of the 1/f -behavior
of other, e.g., non-physical systems.
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Chapter 2

STOCHASTIC

RESONANCE

Noise-induced order [35] and noise-assisted signal transfer in non-
linear systems are hot topics of today’s physics of complex sys-
tems. Important examples are noise-induced patterns and front-
propagations in excitable media, [36] - [43], noise-induced directed
current in ratchet-potentials [44] - [48] and different stochastic reso-
nance (SR) phenomena [48] - [123] (details later on). A proper tun-
ing of the input noise intensity is needed to optimize the transfer of
a signal through the stochastic resonator. Characteristic examples
on SR have been published in the journals Nature [56] - [68] and
Science [69] - [71]. These examples range from SR in single cells,
behavioural SR in the feeding of paddle fishes, neural computing
till climate systems and many others.

One of the main motivations is the identification of mechanisms
allowing the use of random noise for beneficial reasons. This stands
in opposition to the every-day experience of a researcher trying to
avoid or at least to reduce the noise in the experiment and/or ap-
plication. On the other hand, one may ask about mechanisms used
by Nature exploiting the energy contained in the random motion.
This has been done extensively during the last decades and answers
where enabled by the enormous increase of computational speed and
the development of the theoretical fields of Complex Systems and
(Applied) Stochastic Processes.

One example is the Brownian motion in a “ratchet”-potential
(see Fig. 2.1). One considers particles affected by (Gaussian) noise
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x

U(x)

Figure 2.1: The “ratchet”-potential U(x) gives rise to a directed cur-
rent for particles affected by noise with zero mean value.

in an asymmetric, periodic potential U(x). Although the noise has
a zero mean value, the average velocity is non-zero due to the asym-
metry, resulting in a directed current of the particles. Depending
on the correlation time of the noise and the mass of the particles,
current reversals and different mean values for the velocities can
be found. This provides the possibility of a mass separation of the
particles and therefore a constructive application of the noise [44] -
[46]. Further, ratchets can induce a pattern formation process [47]
and also show the phenomena of stochastic resonance [48]. While
the number of SR-publications per year is increasing in the phys-
ical literature (see Fig. 2.2)1, a continuous process of generaliza-
tions of the definition of SR is taking place. Historically two kinds
of general SR systems have been considered, dynamical and non-
dynamical ones. They will be presented in the following. Further-on
in this chapter, modern generalizations and examples are presented
demonstrating the wideness and importance of the phenomena of
stochastic resonance in Nature.

In Chapt. 2.4 a model of a ferromagnetic domain forced by
periodic and stochastic terms is presented, applying the theory of
dynamical SR. This example from condensed matter has been pub-
lished in [82]. In Chapt. 3.1 a discrete stochastic traffic model is
studied.

1The search criteria at http://prola.aps.org/search has been the appearance
of the exact phrase“stochastic resonance” in the full record of all 10 represented
APS journals.
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Figure 2.2: The number of publications of SR (vertical axis) per year
(horizontal axis) shows an increased interest in the field. The data con-
cern only publications in the Physical Review Online Archive (PROLA)
of the American Physical Society (APS). For details see text.

2.1 Dynamical Stochastic Resonance

Historically, SR has first been studied in bistable systems governed
by dynamical equations and has therefore been termed dynamical
stochastic resonance. A generic example demonstrating this kind
of SR is provided by the one-dimensional stochastic motion of a
periodically forced particle in a double well potential (see Fig. 2.4
and Eq. (2.1)). This can be described by the dynamical Langevin
equation

ẋ = ax− bx3 + A0 cos(ωst+ φ) +
√
2Dξ(t) . (2.1)

Here A0 denotes the amplitude of the periodic force (signal) with
frequency ωs and phase φ. The last term in Eq. (2.1) describes
additive, Gaussian white noise ξ(t) with intensity D. Thus it has a
zero mean value

〈ξ(t)〉 = 0 (2.2)

and the δ-function as the autocorrelation function

〈ξ(t)ξ(t+ τ)〉 = δ(τ) . (2.3)
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In absence of any forcing the particle would come to rest at one
of the two minima xmin1,2 = ±c depending on its initial condition
(left or right from the bifurcation point). If, however, the particle
is forced by a weak periodic signal (A0 ¿ ∆U0), it will oscillate
around the corresponding minimum. Further, if noise is added it
will be eventually able to leave the region of the minimum, cross the
barrier ∆U and jump to the other side. Figure 2.4 shows the situ-
ation in the absence of noise. The periodic force acts as a periodic
modulation of the effective potential.

The stochastic motion in absence of the periodic signal is de-
scribed by the Kramers-rate

Wk =
1

2π
[|U ′′(0)|U ′′(c)]1/2 exp (−∆U/D) , (2.4)

where U ′′ denotes the second derivative of the potential with respect
to the coordinate x. Thus Eq. (2.4) determines a characteristic time
τk = 1/Wk for the motion. That is the average time the particle
will wait to make its transition (mean first passage time) due to
stochastic noise. If that time is equal to half the period of the
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Figure 2.4: Particle in a periodically modulated double well potential
U(x): onset for the observation of dynamical stochastic resonance.

periodic signal

τk = π/ωs , (2.5)

the stochastic and deterministic signal get synchronized. According
to Eq. (2.4) this can be achieved by tuning the noise level D. Since
two time scales match, the term “resonance” has been used. But
note, τk is the rate of a stochastic process and not a frequency of a
periodic force.

One can define the response (output) of the system to the in-
put by considering the residence of the particle in either of the
minima regions and define a signal-to-noise-ratio (SNR) in the out-
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Figure 2.5: Analyzing the output of a stochastic resonator for different
noise intensities D: The first coloumn shows the position of the particle
in the double-well potential as a function of time. In the second coloumn
this position has been ”binarised”, i.e., the output is either -c in case
the particle is located on the negative x-axis or +c if the particle can
be found on the positive x-axis. Finally, the third coloumn displays
the power spectral density PSD of the binary output. One can clearly
detect an inrcease of the signal-to-noise ratio until an optimal noise
value is reached.

26



put’s PSD. The SNR is based on the power spectral density of
the output and is defined as the height of the peak at the driving
frequency ωs divided by the interpolated value of the background
noise spectrum at this frequency. Alternatively in use is the signal-
power-amplification (SPA) defined as the ratio of the height of the
peak at the driving frequency to the square of the input signal am-
plitude. Tuning the noise intensity D to the level that fulfills the
resonance condition (2.5) will maximize the SNR and SPA. This
has been termed “stochastic resonance”. Figure 2.5 illustrates the
motion of the particle and shows the corresponding PSD. Here one
can clearly see an increase of the peak at the driving frequency with
increasing noise intensity D. That means the response to the de-
terministic periodic signal is increased if the noise level is higher.
Further noise enhancement will destroy the synchronization which
appears as a decreased SNR.

The described effect has mathematically been shown in [72].
This theory of (dynamical) stochastic resonance is based on the
Master equation of the process

dn±
dt

= W∓(t)n∓ −W±(t)n± . (2.6)

Here, n± denotes the probability to find the systems in either of
the states ± (i.e., in one of the minima regions). W±(t) are the
transition rates between the states and contain the characteristics
of the dynamic, i.e., the periodic and stochastic terms. Solving (2.6)
(after expansion of the transition rates) yields an expression for
the conditional probabilities n+(t|x0, t0). From that any statistical
information about the process can be computed, in particular the
autocorrelation function. Applying the Wiener-Khintchine theorem
(1.10) one can determine the power spectrum density S(Ω) (see Fig.
2.6) of the process and thus, write down the SNR as a function of
the noise intensity D. This indeed shows the maximum behavior of
stochastic resonance.

Note that the sketched theory is based on the Master equation
and can therefore be applied for all systems with a defined transition
rate between two states. The first publication of the theory of SR
has been accompanied by applications to the continuous double
well potential example (Eq. (2.1)) as well as to a discrete two state
example [72].
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Figure 2.6: The theory of stochastic resonance provides an expression
for the power spectrum density S(Ω) which contains a δ-function at the
driving frequency ωS .

One example for the use of the theory is given in Sec. 2.4 and
has been published by the author in [82]. Here, a theory has been
developed to describe the forced motion of a ferromagnetic domain
in different double well potentials. The mathematical description
turns out to be similar to Eq. (2.1) which allows the application of
the presented theory of SR.

The beginning of the research on SR was the work of Benzi et
al. in 1981 [73], [74]. They modeled the global climate as a two
state system using a double well potential. The goal was to find a
mechanism which was suitable for the explanation of the periodicity
of ice ages of about 105 years. No periodicity had ever been found
to be strong enough for inducing the observed climate changes.
Their ground-breaking idea was that additional noise can explain
the switch from a warm age to an ice age, and vice versa. According
to the idea of Benzi et al. the periodic“signal”might be identified as
the small periodic deviations of the earth’s orbital eccentricity and
the noise source could be found in short-term climate fluctuations
caused by the varying radiation of the sun.

In 1983 an experiment was carried out demonstrating SR in an
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electronic circuit, called Schmitt trigger [75]. This circuit is a proper
example for a two state systems since the output can only take
the two values V+ and V−. The preference for one of those values
depends on the input signal which has to cross a threshold VT+ or
VT−, respectively. Using a subthreshold signal and the addition of
white noise, the output peak in the power spectrum passes through
a SR effect. The above theory [72] has been applied to this system
and fits the results in [75]. Other experimental demonstrations have
been given by the study of bistable ring lasers [76] and SQUIDs [54],
[64]. Other examples can be found later on as well as an extensive
review on SR from 1998 [77].

2.2 Non-Dynamical Stochastic Resonance

Contrary to the examples of the previous section, SR has been
shown in a much simpler class of systems which is not governed by
dynamic equations. They are often referred to as threshold systems
and are extremely important for a lot of applications, especially in
biological systems, such as neurons. In similarity to the dynami-
cal cases in Sec. 2.4, the requirement for the observation of SR is
a subthreshold signal superimposed by noise. Whenever the input
(signal + noise) crosses the threshold UT , the systems responds with
a finite pulse (output) of duration τ . Therefore, in the literature,
this system is eferred to as a level-crossing detector [50]. The sit-
uation is illustrated in Fig. 2.7. A periodic signal A0 cos (ωst+ φ)
remains undetected until the Gaussian noise with intensity D as-
sists the signal to cross the threshold. For vanishing D the detector
would be silent for all times and a detection of the signal would be
impossible. For non-zero values of D, the probability for a crossing
event is larger if the (periodic) signal passes through higher values.
Thus the detector output follows more or less the shape of the input
signal, depending on the noise intensity. For very large values of
the noise intensity D À A0 the crossing probability becomes less
and less dependent on the shape of the input signal and hence there
is an optimal noise level for the detection of the signal. In case of a
strict periodic input signal one can describe the detector response
to the input signal by quantities based on the Fourier transform.
Most common in use are the SNR and SPA, already introduced in
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Figure 2.7: Onset of non-dynamical stochastic resonance. Whenever
the (periodic) signal with additional noise crosses the threshold, the
detector will respond with a finite pulse.

Sec. 2.1.

To calculate the SNR, the system of the noise-modulated peri-
odic subthreshold signal has been viewed as a periodic modulation
of the threshold UT and therefore as a periodic modulation of the
mean rate ν(t) of output pulses, which is a stochastic process u(t)
[50]. For white as well as colored noise it is possible to determine
the SNR, exploiting Campbell’s pulse-noise theorem for the calcu-
lation of the spectrum of the output response u(t) for a given ν0,
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which is the mean rate of zero-crossings of the input noise. In order
to determine ν0(t), the Rice formula [173] has been used and the
SNR has been calculated as [50]

SNR =
ν0A

2
0U

2
T

D4
exp−1

2

(

UT

D

)2

. (2.7)

This result shows a maximum of the SNR by variation of the in-
put noise level and consequently the phenomena of SR in a non-
dynamical system. Also in [50], this result has been verified for the
cases of white noise (Eq. (1.13)), Lorentzian noise (Eq. (1.14)) and
1/f noise (Eq. (1.15)).

An important class of systems showing non-dynamical SR are
excitable systems. Unlike dynamical SR only one stable state is
needed and SR occurs though the excitation into an unstable state
with a short residence time. This can be used to model the rest-
and excited states of neurons [78] - [80]. In fact, a major part of
the publications on SR in the physical literature describes the effect
in real- and model neurons, providing a promising interdisciplinary
subject. Further details and examples are found later on as well in
the already mentioned extensive review from 1998 [77].
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Figure 2.8: The summing-up of stochastic resonance: A two-state sys-
tem is subjected to a subthreshold signal which itself is unable to change
the system’s state. Adding Gaussian noise, switches may occur between
the states which allows the system to follow the input signal. If the noise
intensity D becomes too strong, this input-output correlation will de-
crease again, which means that there is an optimal noise intensity Dopt

for which the input-output correlation is maximized.
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2.3 Generalizations and Examples

The requirements to find conventional SR have been mentioned
above: a subthreshold sinusoidal signal and Gaussian white noise.
Beyond that, many generalizations and extensions have been made
to include a much larger number of systems under the notation of
SR.

For instance, there are generalizations concerning the spectral
properties of the noise applied to the systems. SR is not restricted
to cases of Gaussian white noise and has been demonstrated with
colored noise too. General properties of colored noise in dynamical
systems and their application to SR problems have been studied
in [50], [88] and [90]. The phenomena of SR with colored noise
in neurons has been studied theoretically and experimentally for
example in [91] and [181].

2.3.1 Quantifiers of stochastic resonance

It is, however, not necessary to restrict SR to sinusoidal signals.
SR has been shown using aperiodic signals and termed aperiodic
stochastic resonance [78], [83]. This is of special relevance, since
signals found in Nature are mostly aperiodic. The response of sys-
tems to those signals can in most cases not longer be quantified by
means of the power spectral density. Other measures, often based
on entropies, have been used instead [35], [84], [85]. Those mea-
sures include the Shannon entropy and the transinformation (also
mutual information). In [49] the information transfer rate has been
proposed as the proper SR quantifier for neuron systems. In this
example the information channel capacity of neurons has been cal-
culated in the stochastic resonance region using Shannon’s formula.
It has been shown that the transfered information per unit time (in
bits/s) is optimized at a higher noise value as it has been observed
for classical measures, such as the SNR or the SPA. In [86] the
signal itself has been replaced by colored noise. In certain cases,
the power spectral density of this stochastic process has a peak at
a certain frequency with a finite width. This is a kind of colored
noise favoring one frequency. Therefore it is still possible to apply
measures based on the PSD to quantify SR in this special case.

Other popular quantifiers include residence-time-distributions,
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distributions of inter-spike intervals, (cross-) correlation measures
and response functions [77]. In [87] a distance measure between
an input pattern and the corresponding output pattern of an one-
dimensional level-crossing detector has been minimized by tuning
the noise intensity.

2.3.2 Related phenomena

There are many phenomena which have been covered by the term
stochastic resonance or which are seen as SR-like phenomena. Im-
portant examples are presented in the following list. Details can be
found in the given references.

• Supra-threshold SR [92], [93] (the signal is allowed to cross
the threshold even without the noise)

• Multi-threshold SR [93] (Coupled stochastic resonators with
individual thresholds.)

• SR without threshold [94] (In noisy nonlinear systems with-
out local maxima (thresholds) signal enhancement can occur
depending of the definition of the output.)

• Robust SR [95] (infinite noise variance)

• SR without tuning [57], [96]

• Doubly SR [97] (The noise itself creates a nonlinearity in the
system which enable it to enhance the response to a signal.)

• Quantum SR [98], [99] (SR has been found in quantum sys-
tems too.)

• SNR improved by symbolic dynamics [100] (The definition of
the output can be crucial for the enhancement.)

• Coherence resonance [101] (A case without signal where a
dynamical system shows coherent behaviour as an effect of
the noisy modulation.)
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• System size resonance [102] (A case similar to array anhanced
SR where, through the definition of a coupling strength den-
sity, the size of an array is varied instead of the coupling
strength itself.)

• Noise-enhanced propagation [36], [103] (In spatially extended
systems of coupled stochastic resonators, signals can travel
through the system even further if noise is present.)

• Noise-enhanced coding in neuronal arrays [104]

• Noise-enhanced temporal association in neural networks [105]

2.3.3 Stochastic resonance and the solid state

The phenomenon of SR has been observed experimentally and the-
oretically in many physical systems. Important examples in the
physics of the solid state are: thin magnetic films, see Chapt. 2.4,
[81], [82], [154], Ising spin systems in oscillating magnetic fields, see
Fig. 2.11, [106] - [108], electron magnetic resonance [109] - [111],
superconductive quantum interference devices (SQUIDs) [64], [112],
[113] and tunnel diodes [114], [115].

Figure 2.9: Ferromagnetically coupled two-state spins can be viewed
as coupled stochastic resonators and, through their interaction enhance
the SR-effect.

SR has also been observed in optical devices, such as bidirec-
tional ring lasers [72], [76], lasers with saturable absorbers [116],
semiconductor diode lasers [117] and free-electron lasers [118]. Com-
mon for all systems is a bistability, a subthreshold signal and a noisy
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source. The example of the bidirectional ring laser has been one
of the first experimental evidence of SR and proofed the theory of
dynamical SR as outlined in Sec. 2.1. In this example, a ring laser
which consists of a ring interferometer formed by mirrors can run in
two modes. In this two-mode ring laser the light can travel clock-
wise (cw) or counterclockwise (ccw). The pump mechanism has
been modulated by fluctuations and a periodic signal that breaks
the symmetry between the two modes. The intensity of the two
modes has been extracted from the ring laser and converted to a
two-state (cw, ccw) time-series. As a result, the peak of the PSD at
the driving frequency shows the maximum behavior which is typical
for SR.

The above mentioned examples of magnetic systems have played
a key role in the development of SR. Consequently, this can lead to
new results in the field of magnetic materials and thus contribute
to some cross-fertilization between the fields. Of particular impor-
tance are spatially extended systems consisting of coupled stochas-
tic resonators.

The coupling can lead to spatio-temporal patterns (Fig. 2.10)
and a further enhancement of SR. This is called array enhanced
stochastic resonance (AESR). In [108] binary spins have been cou-
pled ferromagnetically, forming a chain. The evolution of the ele-
ments is described by the Glauber model and the transition rate
Wi(σi) between the two possible states of the i-th spin σi is deter-
mined by a transition rate of Arrhenius type α = exp(−1/T ):

Wi(σi) =
α

2

(

1− γ

2
σi(σi−1 + σi+1)

)

−

− αδ

2

(

σi −
γ

2
σi(σi−1 + σi+1)

)

cos (ωst+ φ) ,
(2.8)

with δ = tanh(A0/T ) and the coupling γ = tanh(2J/T ).
The chain is forced by the weak external oscillating magnetic

fieldA0 cos (ωst+ φ). Tuning the noise intensity, which enters through
the temperature T in the exponent of the transition rate, exhibits
the SR phenomena for the chain of coupled spins at a fixed value of
the ferromagnetic coupling constant J . If, at the optimal tempera-
ture Topt, the coupling constant J is tuned, a further enhancement
of the SR effect has been observed analytically [108] and numeri-
cally. This is the essence of AESR and shown in Figure 2.11 and
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time

     i−th  spin                   

Figure 2.10: Simulated spatio-temporal pattern of an array of 400 fer-
romagnetically coupled spins due to the interplay between a subthresh-
old periodic magnetic field and Gaussian magnetic noise. See Figure
2.11 for details. Simulation by the author.

2.12.

The spin chain is an one-dimensional example of coupled zero-
dimensional stochastic resonators. Until now, most research on SR
has been focused on zero-dimensional systems. Specifically in mag-
netic materials, SR in uniaxial ferromagnetic single-domain parti-
cles and thin epitaxial iron garnet films driven by noisy and periodic
external magnetic fields at the uniform magnetization reversal has
been observed [119] - [121]. SNR measurements of such systems
have been performed and a maximum SNR has been found. SR of
a domain wall (DW) motion in one-dimensional nonuniform mag-
netic media has been studied in [122] and [123]. This phenomenon
can be observed experimentally in magnetic nanostructures with

37



J

T

0.0 0.2 0.4 0.6 0.8

-5

0.2

0.4

0.6

0.8

1.0

1.0 1.2

10

Figure 2.11: Array Enhanced Stochastic Resonance (T = tempera-
ture (noise intensity), J = ferromagnetic coupling constant). This is
an example for AESR in a model of ferromagnetically coupled spins
(horizontal axis in each image; spin up = black dot, spin down = white
dot) evolving in time (vertical axis in each image) according to Eq.
(2.8). For each value of the coupling constant J there is an optimal
synchronization between the ensemble averaged time series and the ap-
plied oscillating magnetic field. Further-on there is a global optimum
at Topt ≈ 0.6 and Jopt ≈ 0.6 (dimensionless units). At very low temper-
atures the initial states are (almost) preserved and the individual spin
does (almost) never changes its state. Thus, the individual spin can
not follow the applied oscillating magnetic field. At very high values of
the temperature, corresponding to a high noise intensities, the periodic
component of the dynamic is “washed out” by the noise. Simulations
by the author.

a long extension in only one dimension, named nanowires [135] -
[138].

There is a good experimental possibility of registering the stochas-
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Figure 2.12: Non-monotonic behavior of the spectral power amplifica-
tion (SPA) as a function of the coupling constant J provides numerical
and analytical [108] evidence for AESR in a ferromagnetically coupled
spin chain.

tic motion of a DW in the magnetic nanostructures by spin-polarized
scanning electron microscopy with high spatial resolution [139],
[140], already used successfully for investigation of the spin config-
uration of such structures [141], [142]. The experimental investiga-
tion of DW dynamics in a thin epitaxial ferrite-garnet film has been
carried out in [154]. The stochastic motion (Barkhausen jumps) of
a DW segment between two nearest pinning centers subjected to
some periodic and inhomogeneous magnetic fields and noise has
been studied, and measurements of the SNR have been performed.
The SNR of the output has shown a clear maximum by increasing
the applied noise strength.

The goal in Chapt. 2.4 is to study SR in a model of the mo-
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tion of a 1D system subject to deterministic and stochastic forces
in bistable, dissipative media. It is shown, analytically and numer-
ically, that SR exist in the model and a experimental verification
should be possible. This would possibly provide a new tool to de-
termine system and material parameters, such as the stiffness of the
domain. Further-on, many fundamental problems can be analyzed
in the framework of this model [81]:

• dynamics of polymers and biomacromolecules [143],

• the motion of dislocations in solids [144],

• the dynamics of flux lines (vortices) in type II superconductors
[145], [146],

• domain and domain wall dynamics in thin and ferro-elastic
films [149],

• the motion of a front (a wave of transition between the two
states dividing the two phases by a narrow moving interface)
[42] and

• reaction-diffusion systems [147].

Another possible benefit of the research on SR for solid state
physics has been suggested in [148]. The experimental observa-
tion of AESR, spatiotemporal synchronization and noise-enhanced
propagation in a simple linear array of coupled bistable electronic
triggers is reported and an analogy to charge density wave (CDW)
like nonlinear conductivity in solids is pointed out.

2.4 Stochastic Resonance in Ferromag-

netic Domain Motion

As an example for dynamical stochastic resonance discussed in Sec.
2.1 and an application of the theory sketched there, the motion of
a ferromagnetic domain is studied in the following. In particular,
the motion of a single stripe domain driven by external determin-
istic and noisy magnetic fields in an inhomogeneous thin magnetic
film has been investigated analytically and numerically. A single
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Figure 2.13: A ferromagnetic stripe domain (solid line) in the x-y-
plane is subjected to a double-well, time independent magnetic field

H1, here H
(1)
1 = −a

2y
2 + b

4y
4.

stripe domain is an important component of magneto-optic record-
ing devices [149]. Nowadays behavior of a single domain subjected
to deterministic uniform and nonuniform magnetic fields has been
investigated intensively [150] - [153]. A single stripe domain is a
region of a film limited by parallel domain walls and magnetized
against the remainder of the film and the bias field. Such domains
can be produced by either the system of orthogonal conductors
with current on the surface of epitaxial garnet-ferrite film or a pair
of centered electromagnets placed on the two sides of the film [153].
A single stripe domain with free ends is unstable and would shrink
into a bubble. But, the ends of a domain are able to be fixed in
static pinning centers, as, e.g., given by impurities and other de-
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fects of a film or the points of the domain intersection with the
coil contour [150] - [153]. Thereby, in the case of two pinned ends
the stripe domain between them is straight in the presence of an
uniform bias field. In the following, stochastic resonance within the

������������ ������
������

x

y

l0

0

Figure 2.14: The magnetic stripe domain in the x-y plane is pinned
at the locations x = 0 and x = l. The elongation is due to the action
of the bistable potential resulting in a force directed perpendicular to
the plane.

motion of a single domain placed in a double-well shaped potential
and restricted by two pinning points (Fig. 2.13 and 2.14) will be
demonstrated. When the noise and the signal are absent, the sin-
gle domain in the bistable potential will be curved and its profile
will have one of two equilibrium configurations which minimizes the
total energy of the system.

The domain is driven by external noise and a weak periodic
external field. For example, an electromagnetic coil excited by a
signal produced by a noise generator can be of use as a source of
a noisy magnetic field [154]. Both forces are considered as global
actions (time dependent) and do not depend on the position of the
domain. ”Weak periodic field”means that the external signal never
has a sufficiently large amplitude that the system escapes to the
second stable configuration without the noise. Otherwise, with the
addition of noise the single domain will surmount the barrier be-
tween the two equilibrium configurations and switch to the opposite
symmetric configuration. Following the predictions of SR one can
expect that the action of the weak periodic forces on the hopping
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dynamics of the domain will become most coherent to the periodic
driving at an optimal noise level.

2.4.1 Lagrangian equation of motion

Let us consider a single stripe domain pinned at the points x =
0, y = 0 and x = l, y = 0. The length l is assumed to be large
compared with the width w of the front but small with respect to
the curvature radius. For this case one can ignore changes of w
and of the energy due to deformations of the domain profile besides
some geometrical factor. Then, the Lagrangian equation of motion
describing the evolution of the stripe domain profile y(x, t) can be
derived from the Lagrangian function density

L{y(x, t)} = T − U . (2.9)

Here

T = Md0wρ

(

∂y

∂t

)2
√

1 +

(

∂y

∂x

)2

(2.10)

stands for the kinetic energy density. Here, U = Ez + Em + Es is
the potential energy density, M represents the spontaneous magne-
tization, d0 the thickness of the thin film and ρ = m/(2Md0), with
m as the effective mass per the unit area of a domain wall.

The contributions to U are the Zeeman (Ez), magnetostatic
(Em), and domain wall surface (ES) energy densities. The Zeeman
contribution is

Ez = 2Md0w(Hb −H(y, t))

√

1 +

(

∂y

∂x

)2

, (2.11)

where Hb is the temporally constant and spatially uniform biasing
field and H(y, t) stands for spatially inhomogeneous, time depen-
dent periodic and noisy magnetic fields.

The second term of the potential energy density is given by

Em = 2Md0wHm

√

1 +

(

∂y

∂x

)2

, (2.12)

where Hm is the magnetostatic field.
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The expression for the magnetostatic energy density of the infi-
nite straight domain Em [150] is used as Em(w) in the case l À w.
Finally, the domain wall surface energy density contribution is

Es = 2wσ

√

1 +

(

∂y

∂x

)2

, (2.13)

where σ is the domain wall surface energy density. The physics of
this term arises from the exchange interaction. In Eqs. (2.10) -

(2.13) a geometry factor

√

1 +
(

∂y
∂x

)2
appears in order to replace

the energy density for the bow element by the energy density for
dx.

Collecting all temporally constant and spatially uniform fields
leads to a common parameter

H0 = Hb +
σ

Md0

+Hm, (2.14)

which is a measure for the stiffness of the domain and can be seen
as a kind of coupling parameter [149], [155]. Later on it will be one
of the central values of the analysis.

Now the Lagrange density (2.9) can be written as

L

(

y,
∂y

∂t
,
∂y

∂x

)

= 2Md0w

[

1

2
ρ

(

∂y

∂t

)2

−H0 +H(y, t)

]

√

1 +

(

∂y

∂x

)2

.

(2.15)
Since it depends on three variables, the Lagrangian equation of
motion has to be used in the form

d

dt

∂L

∂(∂y/∂t)
− ∂L

∂y
+

∂

∂x

∂L

∂(∂y/∂x)
= − ∂Q

∂(∂y/∂t)
(2.16)

with a dissipative function

Q

(

∂y

∂t
,
∂y

∂x

)

= 2Md0wρλ

(

∂y

∂t

)2
√

1 +

(

∂y

∂x

)2

, (2.17)

containing λ = αM/(mγ∆) as the viscous attenuation, α is called
the Gilbert relaxation constant, ∆ as the domain wall width and γ
as the gyromagnetic ratio.
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In the following, the over-damped dynamics will be considered
only. Therefore all terms which have their origin in the kinetic
energy density will be neglected. For experimental ferrite-garnet
films, the effects associated with the kinetic energy are negligibly
small for the sinusoidal driving fields at low-frequency Ω¿ 70MHz
[149]. In this case the driving field frequency is well below the
resonance frequencies of the domain. It is worth noting that the
range of low-frequencies is the most interesting for SR observation.

Then, inserting (2.17) and (2.15) into the equation of motion
(2.16) leads to the over-damped dynamics

2ρλ
∂y

∂t
− ∂H(y, t)

∂y
+

[H(y, t)−H0]
∂2y
∂x2

1 +
(

∂y
∂x

)2 = 0. (2.18)

Hereby H(y, t) shall be the sum of two external fields, one
bistable temporally constant contributionH1(y), andH2(y, t) stand-
ing for the temporally periodic and noisy excitations.

Two possibilities of a bistable inhomogeneity have been ana-
lyzed. The first one is a sum of a parabolic and a quadric potential

H
(1)
1 (y) = −a

2
y2 +

b

4
y4 . (2.19)

The second one is the “cusp shaped” potential

H
(2)
1 (y) = −ã(b̃|y| − y2/2) , (2.20)

which corresponds to the combination of gradients and parabolic
potentials and has discontinuities in the derivative at y = 0. Later
on, these potentials will be referred to as the first and second po-
tential.

Possibly, bistable potentials of such types can be set up by a
spatially nonuniform magnetic field of a system of permanent mag-
nets [156] or an effective field of magnetic micro-defects created by
the method of synchrotron X-ray lithography [157] or by the laser
annealing method [158].

The gradient magnetic field

H2(y, t) = y[A0 cos (Ωst+ φ) +
√
2Dξ(t)] (2.21)

consists of a periodic signal field with frequency Ωs, amplitude A0

and initial phase φ. The force generated by that part is referred
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to as signal. The value of φ must be treated as a random vari-
able, uniformly distributed over the interval [0, 2π] [72]. To make
the analysis (theory, experiment and numerics) stationary, results
should be averaged over this initial phase.

The second contribution describes a noisy force and we assume
Gaussian white noise with mean value 0 and the δ-function as the
autocorrelation function:

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t+ τ)〉 = δ(τ) . (2.22)

D scales the intensity of this noise. The noise will be of ”global”
type, i.e., it is, as the signal, a function of time only and will there-
fore have the same value for all y(x).

Eq. (2.18) has been used as the basis for a numerical investiga-
tion and for a qualitative theory developed in the following section.
Both approaches give evidence for stochastic resonance for the mo-
tion of the stripe domain and agree qualitatively (see Figs. 2.16
and 2.17).

The simulated values of the integral
∫ l

0
y(x)dx of the domain

determines the position of the domain. If the integral is negative,
the domain is located at a different side of the barrier as it does
when the integral is positive. The sign has therefore being used
to produce a binary output consisting of the numbers +1 and -
1. Therefore, only qualitative results can be expected from the
simulation. The numerical investigation has been carried out using
simple and fast Euler routines written in C combined with FFT-
routines from [184].

2.4.2 Stationary case without temporal forces

According to the described setup an important restriction is made
for the motion of the domain. It is assumed that the domain is
pinned at two points. Hence, the following boundary conditions
should be obeyed

y(x = 0) = y(x = l) = 0 . (2.23)

Then, if H2(y, t) = 0, Eq. (2.18) possesses the stationary (time
independent) solution

y(x) = ±B sn

(

x

x0

, k

)

(2.24)
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and

y(x) = ±b
[

1−
cosh( 1

l0
( l

2
− x))

cosh( l
2l0

)

]

(2.25)

for the first and second potential, respectively.
Here

x−1
0 =

√

a+ d

2H0

, B =

√

a− d

b
,

k =

√

a− d

a+ d
, l0 =

√

H0

a
. (2.26)

sn is the elliptic sine and d is an integration constant.
Using the condition ∂y(x)/∂x = 0 for x = l/2N, N = 1, 2, ...,

one can get the equation for the integration constant d for the first
potential in the form

l

2Nx0

= K(k) , (2.27)

where K(k) is the complete elliptic integral.
The curve y(x) can have more than one extremum between x =

0 and x = l. The extrema will be located at x = nl
2N

(n = 1, ..., N)
because of the symmetry of the system. It is evident that the
domain configuration with N = 1 has the minimal energy.

It follows from Eqs. (2.24) and (2.25) that the domain configu-
ration depends on the stiffness parameter x0/l or l0/l for the first
and the second potential, respectively.

The larger H0 and smaller l and a, the less dangled the domain
will become. Approximate expressions of the proposed solutions for
the limiting cases of stiff and flexible domains can be found in the
Appendix.

Stationary (time independent) configurations of single domains
in uniform and inhomomogeneous magnetic fields have been studied
experimentally in epitaxial garnet-ferrites [150] - [153]. For these
films, doped by Bi, the typical parameters where:

4πM = 160G = 1.6 × 105 A/m, σ/(4πM 2d0) = 0.06, d0 = 8.4 ×
10−6 m, w = 4× 10−6 m, H0 = 4.4× 103 A/m, α = 0.05 .. 0.5, γ =
0.22×106 m/sA, ∆ = 1.0×10−6 m, ρλ ≈ 3× (0.1 .. 1)×105 sA/m3;
in inhomogeneous magnetic fields with

√

a/b = 2 × 10−6 m (a =
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3.2 × 1013 A/m3 and b = 2 × 10−6 for the first potential, and
a = 0.8×1013 A/m3 and b = 2×10−6 for the second potential), the
characteristic length is l0 ≈ 7.5× 10−6 m.

2.4.3 Numerical treatment

The domain can be seen in analogy to a stretched spring which
is unable to relax into the state corresponding to a straight line
y = 0. This is due to the action of the attractive forces arising
from the double-well potentials above and below the y = 0 axis.
Applying temporal noise and temporally periodic forces will drive
the “spring” to a flip-flop behavior between the two possible stable
configurations. The dynamics of these flippings is dependent on the
noise strength and the stiffness of the domain, which will we will
see later on. The amplitude A0 of the periodic force is assumed
to be sufficiently small, so that jumps without noise would not
occur (subthreshold). Therefore it is required that A0/D will have
a small value. Hence, jumps through the energetically unfavorable
state y = 0 are initiated by the noise but, as will be seen, are
synchronized by the periodic signal. Different snapshots of the flip-
flop dynamics of the domain are shown in Fig. 2.15.

Equation (2.18) has been simulated by a fast Euler method tak-
ing care of the boundary conditions (2.23). To ensure the reliability
of the computer program the convergence to the stationary (time
independent) analytic solutions has been tested and was observed.
One of these stationary solutions is marked by the dashed line in
Fig. 2.15 and perfect agreement with the analytic solutions was
found.

Further in the numerical analysis, the stochastic dynamics is
reduced to a two state time series with the states +1 and -1 de-
pending on the location of the domain above or below the y = 0
axis. The response of the system to the noise and the periodic force,
later called output q(t), then reads

q(t) = sgn

(

n
∑

i=1

y(xi)

)

= ±1 , (2.28)

where n is the number of simulated boxes which have been used
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Figure 2.15: The numerical solutions of the dynamics Eq. (2.18) show
different snapshots of the vertical jumps of a ferromagnetic stripe do-
main in a two dimensional plane which is pinned at two points and
exposed to a periodic field and Gaussian white noise. The dashed line
marks the stationary solution (analytic and numeric) (Numerical units).

according to the necessary discretization of the numerical problem.
The resulting binary time series, e.g.,

q(t) = ...,+1,−1,−1,+1,−1,+1,+1,+1,−1, ... (2.29)

can then be processed by Fourier analysis which has been carried
out by a fast Fourier transform (FFT) algorithm. To minimize the
errors arising from the FFT aliasing problem,a signal frequency Ωs

matching one of the frequencies of the resulting discrete Fourier
spectrum has been chosen. The FFT used 4096 sampling points
of a total running time of around 2000 time units. A total of 50
spectra with different initial phases had to be averaged in order to
get a reliable power spectrum density (PSD).
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Figure 2.16: Numerical simulation of the SR-effect in the noisy, peri-
odically modulated motion of a ferromagnetic stripe domain in the first
(above) and second bistable potential. The signal-to-noise ratio (SNR)
shows a maximum behavior as the noise intensity D is increased. The
SNR is enhanced even further if the stiffness H0 of the domain is in-
creased.
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The resulting PSD’s consists of peaks at Ωs and its multiples rid-
ing on a Lorentzian-like background and is characteristic for many
examples of periodically driven stochastic over-damped nonlinear
dynamics. To prove stochastic resonance the signal-to-noise ratio
(SNR) of the output has been investigated. The SNR has been
defined by the height of the first peak at Ωs divided by the inter-
polated value of the background noise at this value.

As shown in Fig. 2.16 the SNR shows a clear maximum while
tuning the noise intensity D. This maximum behavior is called
stochastic resonance. Increasing the intensity of the input noise
leads to an increased coherence between the output and the signal.
The reasons for this behavior is that tuning noise intensity leads
to a change of the stochastic time scale, the flipping time of the
domains. For optimally selected noise this time scale can be brought
in accordance with the time of the periodic driving. If the mean
time for a single flip (mean first passage time (MFPT)) equals the
half period of the signal the height of the first peak in the PSD
becomes maximal. It means a conformance between two time scale.
Therefore the term resonance is used.

If the domain is located above y = 0 and the periodic force
points downwards (towards negative values), the action of this force
changes the stochastic time scale so far that the stochastic transi-
tion to locations below y = 0 becomes nearly a sure event within
the time the force acts downwards (half period of the signal). The
second ingredient is that the probability of re-hopping upwards dur-
ing that half period is vanishingly small. Thus the output follows
the input signal during a half period with high probability. Since
the situation is symmetric with respect to a change of the sign of
the force, the domain will follow the signal by subsequent changes
for sufficiently low frequencies of the driving.

In addition, Fig. 2.16 shows that the maximum is shifted to
larger values of D if the stiffness parameter H0 of the domain is
increased. A way to understand this is given in the next section
where a theoretic analytic approach is presented using a picture of
an effective potential.
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2.4.4 Theoretical approach

As the starting point for a qualitative analysis, Eq. (2.18) for the
over-damped dynamic is used again. Although the approximation

(

1 + (
∂y

∂x
)2
)−1 ≈ 1− (

∂y

∂x
)2 (2.30)

for small ∂y
∂x

can be made, it is still hard to solve the equation di-
rectly. According to Kantarovich [159], the approximate solution of
the variational problem should be sought in the form of finite com-
bination of trial functions with unknown coefficients depending on
time. Such an approximation is more adequate than other methods
in the present case. In first approximation the ansatzes

y(x) = A(t)

{

B sn

(

x

x0

, k

)}

, (2.31)

y(x) = A(t)

{

b

[

1−
cosh( 1

l0
( l

2
− x))

cosh( l
2l0

)

]}

(2.32)

can be used for the first and second potential, respectively.
The motivation to seek solutions in the above given shape is

provided by the stationary solutions which are the factors in (2.31)
and (2.32) in the brackets. A(t) will represent an elongation of
these solutions and equals ±1 for the stationary case. The benefit
of using this ansatz is that the two-dimensional problem is reduced
to a one-dimensional one.

Substituting the ansatzes (2.31) and (2.32) into the Lagrangian
(2.9) and the dissipative function Q (2.17) and integrating them
with respect to x, one gets the functionals L[A(t)] and Q[A(t)].
Considering only small deviations of the domain from the y = 0
axis, i.e., small elongations A(t), terms with order higher than A4

and A2 for the first and second potential, respectively, can be ne-
glected. After carrying out the integration over x this ends up with
polynomials in A(t). One gets for the first and second potential

L(1)[A(t)] =
S1

2
A2 − S2

4
A4 + S3A[A0 cos (Ωst+ φ) +

√
2Dξ(t)] ,

(2.33)

Q(1)[A(t)] = (1/2)Λ(1)

(

∂A

∂t

)2

, (2.34)
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L(2)[A(t)] = C1|A| −
C2

2
A2 + C3A[A0 cos(Ωst+ φ) +

√
2Dξ(t)]

(2.35)
and

Q(2)[A(t)] = (1/2)Λ(2)

(

∂A

∂t

)2

. (2.36)

The coefficients S1, S2, S3, C1, C2, C3,Λ
(1) and Λ(2) can be found

in the Appendix.
Considering again the over-damped limit (2.18) of (2.16), one

arrives at the reduced equations for the dynamics of the elongations

Ȧ(t) = S̃1A(t)− S̃2A
3(t)+ S̃3A0 cos (Ωst+ φ)+ S̃3

√
2Dξ(t) (2.37)

and

Ȧ(t) = C̃1sign(A(t))− C̃2A(t) + C̃3A0 cos (Ωst+ φ) + C̃3

√
2Dξ(t) ,

(2.38)
with S̃i = Si/Λ

(1) and C̃i = Ci/Λ
(2), i = 1, 2, 3.

For S1, S2, C1, C2 > 0, Eqs. (2.37) and (2.38) describe nothing
else but the stochastic motion of a Brownian particle in modulated
double well potentials with rescaled signal amplitudes A

(1)
0r = S̃3A0

and A
(2)
0r = C̃3A0 and rescaled noise intensities D

(1)
r = S̃2

3D and

D
(2)
r = C̃2

3D.
These are one of the best studied systems in the theory of SR

and therefore, former results can be used after rescaling the pa-
rameters according to our problem. Of particular use is the theory
of dynamical SR outlined in Sec. 2.1. This theory was proven to
give sufficiently good results for small amplitudes, especially for a
qualitative analysis as in the presented case.

According to Sec. 2.1 (and [72]), the Kramers rate, which cor-
responds to the inverse MFPT, can now be determined and hence,
the PSD. From the corresponding PSD’s the signal-to-noise ratios
can be extracted and they read

SNR(1) ≈ 1√
8

S̃2
1A

2
0

S̃2S̃2
3D

2
e
−

S̃
2
1

4S̃2S̃2
3

D (2.39)

and

SNR(2) ≈ 1

4

C̃2
1A

2
0

C̃2C̃2
3D

2
e
−

C̃
2
1

2C̃2C̃2
3

D , (2.40)
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Figure 2.17: Analytical calculation of the SR-effect in the noisy, peri-
odically modulated motion of a ferromagnetic stripe domain in the first
(above) and second bistable potential. The signal-to-noise ratio (SNR)
shows a maximum behavior as the noise intensity D is increased. The
SNR is enhanced even further if the stiffness H0 of the domain is in-
creased.

respectively.
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The SNRs (2.39) and (2.40) are plotted with respect to the noise
intensity D in Fig. 2.17 and display the well known bell-shaped
curves. Qualitatively they agree with the SNR of the numerical
analysis and have maxima with values

SNR(1)
max = 8

√
8
S̃2S̃

2
3

e2S̃2
1

A2
0 (2.41)

and

SNR(2)
max = 4

C̃2C̃
2
3

e2C̃2
1

A2
0 (2.42)

located at

D(1)
max =

1

8

S̃2
1

S̃2S̃2
3

(2.43)

and

D(2)
max =

1

4

C̃2
1

C̃2C̃2
3

, (2.44)

respectively.
From the mathematical point of view these maxima are a con-

sequence of the competition of two tendencies. On the one hand,
the noise enters like exp(−const/D) giving rise to a steep increase
with increasing (but still small) D. For large D this factor is no
longer dominating but near 1. On the other hand, the SNRs have
a D dependent pre-factor, which is a function of a power in D, and
thus is unimportant for small D but dominates for D → ∞. It is
clear that in this limit, the SNRs should decrease. Hence, one gets
a maximum, where the strongly increasing small D branch meets
the softly decreasing large D branch.

The calculated SNRs show qualitative agreement with the nu-
merics also in their behavior for increasing H0, which stands for
the domain stiffness. The maxima grow and are shifted to lower
values of D with increased stiffness. The coefficients S̃1, S̃2 and
C̃1, C̃2 contain the stiffness parameter x0/l and l0/l, respectively.
Therefore, the effective potential for the first and second case,

U
(1)
eff = −S1

2
A2 +

S2

4
A4 (2.45)

and

U
(2)
eff = −C1|A|+

C2

2
A2 , (2.46)
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will change by varying these parameters. Increased parameters x0/l
and l0/l flatten the effective potentials (2.45) and (2.46), the do-
mains are pulled towards the y = 0 axis and less noise is needed to
bring the domain to the other side of the potential barrier. That
explains the growth of the SNR maximum and its shift to lower
values of D for an increased stiffness H0. Therefore this system
represents a special example of array enhanced SR (AESR) with a
shift of the optimal noise strength D only towards smaller values
while increasing the coupling strength.
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Chapter 3

RANDOM NETWORK

SWITCHES

3.1 A Traffic Model of Neuronal and

Road Networks

The model, which will be studied in this section has been presented
and published in [168] and further developed and discussed by the
author in [169] and [170]. It describes neural spike traffic at a
junction of neuron channels but can, because of its generality, be
used to describe car traffic at highway junctions as well.

Probably, every car driver has experienced a beneficial effect of
randomness. In a certain crowded traffic situation, it is not possible
to get into a major road from a lower priority road, if the cars
are passing the junction periodically with low distance. The gaps
between subsequent cars on the main road are not large enough for
a waiting car to get into that gap and to accelerate to the required
speed. Only a larger gap, which usually occurs randomly in the
car flow, makes it possible to enter. Therefore, certain fluctuations,
i.e., random noise, can be beneficial for the traffic in certain cases.
Similar problems of car traffic including the problem of the gap
have been extensively studied in the literature in the last decades
[160] - [162].

Road traffic systems, discussed from the viewpoint of statistical
physics are traffic jams [163] - [165], time series of single-vehicle
data [166] and stabilization of traffic flow due to interaction [167].
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However, the questions of an optimal noise and of a possible
stochastic resonance have not been addressed yet. In this chapter,
the effect of triggering the traffic by various noises, i.e., stochastic
processes, is investigated and it is shown that there is an apparent
stochastic resonance phenomenon, which concerns the shape of the
noise spectrum. This phenomenon can be seen as a type of stochas-
tic resonance effect, where the optimal tuning concerns the shape
of the power spectral density S(f) rather than the intensity D of
the input noise.

Figure 3.1: The presented junction model can be used to describe
signal transfer in neurons as well as car traffic in road networks. See
text.

The model considers a single-laned one way main road (channel)
with a defined distribution of errant cars (neural spikes). At a
junction J a side road is assumed with an infinite number of cars
waiting to enter the main road traffic depending on the gap size
Gi between two consecutive main road cars. The number Ni of
side road cars entering the main road shall be given by the integer
function INT() of the ratio between the size of the i-th gap and a
minimal gap size G0, where just a single car could enter (see Fig.
3.2).

Ni = INT

(

Gi

G0

)

(3.1)

The function INT() simply reduces the number to the nearest
integer value, i.e., truncates the digits behind the decimal place.
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Figure 3.2: The model: Main channel traffic from 1 to 3 reaches the
junction J. Side channel traffic is waiting at 2 to enter the main channel
depending on the i-th gap size Gi.

To avoid car accidents a minimal gap value could be introduced
assuming that the distancesGi andG0 are measured in conventional
length units. Alternatively one can measure G discretely in unit
lengths of a car.

To measure the efficiency of the overall traffic (main and side
road) the geometric mean ν =

√
ν1,3ν2,3 can be used, where ν1,3

denotes the mean rate of main road traffic before the junction and
ν2,3 the mean rate of side road cars entering the main road, re-
spectively. The mean rates are the average number of events (cars,
neural spikes) per unit time. The geometric mean yields small val-
ues even when only one of the traffic channels performs badly. In
particular, zero geometric mean would account for the important
situation where information flow through one of the channels is
blocked completely. It is clear that the arithmetic mean (as a mea-
sure of efficiency) does not have this advantage. The information
about traffic efficiency can also be supplied by a ν2,3(ν1,3) plot. The
larger ν2,3 for a given ν1,3, the higher the efficency in the model.

To make the model relevant to neural spike traffic one consid-
ers the roads to be neuron channels. As a simplification one can
consider both channels to have equal priority. The neuron trans-
fers the spike coming from channel 1 or 2, if the time since the
last transferred spike is greater than G0, where G0 represents the
refractory time of the neuronal junction. This is a simplistic way
of modeling a synapsis that connects an axon of one neuron to
the dendrite of another one. There has been extensive research
over the last 50 years and a lot of knowledge on the anatomy and
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the biophysical properties of synapses has been discovered. One of
the commonly accepted facts concerns the refractory period of the
cell membrane of the synapsis which occurs after a depolarization
process. Further-on, it is known that a generated action potential
(spike), i.e., the information flow, proceeds only in one direction.
That is due to the blocking of the sodium channels which has been
passed by the spike. Much less, however, is known about the func-
tional properties of the synapsis. Especially questions about the
appropriate measure for the effect of a synapsis, optimizing mech-
anisms and questions concerning information processing remain to
be answered [171].

In the presented model, the frequency of transferred spikes de-
pends on the statistics of spike generation; moreover, the spikes
can be lost. Both the output spike frequency and the probability of
spike loss influence the efficiency of information transfer, therefore,
the question arises about the kind of spike statistics that provides
the best efficiency of information transfer. Since neuronal spikes
can be lost in contrast to cars, the spike transfer probability and
number of output spikes are the relevant measures for the neuronal
system.

With this model three different classes of point processes con-
trolling the generation of the spikes (respective car locations) have
been investigated: Poisson process, a case with noise but with-
out memory effects; zero crossing events of colored noise processes
with 1/f k shaped spectra and periodic traffic, a case with no noise.
Further-on the periodic case has been modified by modulation of
the phase with Gaussian noise. Here, again the 1/f k spectrum of
the noise has been varied by tuning the parameter k.

3.1.1 Noise triggered input

3.1.1.1 Poissonian process

The time moments when cars on the main road pass the junction
shall be generated by a Poisson process with rate νpois

1,3 . As out-
lined in 1.2.1.1, the Poisson process is one of the most fundamental
Markov processes and occurs in a wide range of natural phenom-
ena. The probability to find exactly M events (cars passing the
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junction) during time interval τ is given by

PM(τ) =
(νpois

1,3 τ)M

M !
exp (−νpois

1,3 τ) . (3.2)

To calculate the relationship between mean rates ν2,3 and ν1,3, we
can define the moment of a car passing the junction as t0 = 0,
and introduce two (positive) observation times t1 and t2, such that
t1 < t2. From Eq. (3.2) it follows that the probability to have
events (one or more) during time interval t1 < t < t2 if there were
no events at t < t1 is

PM≥1,t1,t2 = P0(t1)− P0(t2)

= exp (νpois
1,3 t1)− exp (νpois

1,3 t2) . (3.3)

In our model this equation gives the probability of accommodating
exactly one car from the junction if we put t1 = G0 and t2 =
2G0 (one interval of duration G0 is “clean”, but not two). The
probability of accommodating exactly two cars is obtained from
Eq. (3.3) if t1 = 2G0 and t2 = 3G0 (two intervals of duration G0

are clean, but not three). And so on. The mean number of cars
accommodated from the junction per single interval between cars
in the main road is given by the sum of these probabilities weighted
by the corresponding car numbers

〈N〉 =
∞
∑

n=1

n
[

exp (−νpois
1,3 G0n)− exp (−νpois

1,3 G0(n+ 1))
]

=
exp (−νpois

1,3 G0)

1− exp (−νpois
1,3 G0)

. (3.4)

Thus the average rate of entering from the junction is

νpois
2,3 = νpois

1,3 〈N〉 =
νpois

1,3 exp (−νpois
1,3 G0)

1− exp (−νpois
1,3 G0)

. (3.5)

Note that this analytical result is exact and has been plotted to-
gether with results of a simulation in Fig. 3.3.
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Figure 3.3: Side channel traffic rate ν2,3 as a result of incoming Poisson
traffic with rate ν1,3. Plotted is the analytic result of Eq. (3.5) (solid
line), which is confirmed by results of a simulation (dots).

3.1.1.2 Colored noise

Now, consider the case when the point process describing the car
occurrence on the main road is generated by the zero crossing events
of a Gaussian 1/f k noise. When k > 0, this noise has a long-range
memory. Due to the experimental evidence of occurrence of 1/f k-
like noise processes in car traffic [172] and neural systems [176]-
[178], [181], it is tempting to apply this kind of noises (0 < k < 2)
to generate the car occurrence. The mean zero crossing rate of a
Gaussian noise process is described by the Rice formula [173]

νcolor
1,3 = 2

√

(
∫∞

0
f 2S(f)df)

√

(
∫∞

0
S(f)df)

, (3.6)

where f is the frequency and S(f) is the power spectral density of
the noise. The value of ν2,3 has not been calculated analytically.
The time distribution of the zero crossing events is an unsolved
problem [173] - [176].

To compare the different cases of traffic processes, computer
simulations have been carried out. The length of the simulation
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Figure 3.4: Superiority of colored (1/f k generated) traffic over Pois-
sonian and an example of an inefficient periodic process.

and the point processes describing the car occurrence on the main
road were 32768 (215) and the minimal gap size G0 was 20. In
comparison with a practical highway traffic situation, where the
mean distance between the cars is 100 meters, the total process
length corresponds to the main traffic road of 160 km. In Fig.
3.4, ν2,3 versus ν1,3 is shown. The results for Poissonian traffic
turned out to be in excellent agreement with the predictions of Eq.
(3.5) and can be regarded as a test of the simulation accuracy (Fig.
3.3). The frequency range of integration relevant in Eq. (3.6) was
determined by the simulation length, so the colored noise traffic was
solely controlled by the spectral exponent k. For the results shown
in Figure 3.4, the range 0 - 2 was used for k. An example of an
ordered traffic with the strictly periodic fragments of Gi . G0 and
regular interruptions with a large Gi to account for ν1,3 < 1/G0 is
also given here. It is obvious that this example of periodic traffic
gives the smallest ν2,3 and the colored noise traffic gives the largest
ν2,3, especially for medium and high ν1,3. It is also apparent that
a better compromise between the ν1,3 and ν2,3 is provided by the
colored noise traffic compared to the Poissonian case. In the case
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Figure 3.5: Stochastic resonance like peak in the car traffic efficiency
ν =

√
ν1,3ν2,3 (solid line) versus the spectral exponent of the colored

noise traffic. From L. Kish [168].

of the colored noise generated traffic, the most interesting result
is a new kind of SR, spectral stochastic resonance (SSR), which
demonstrates the existence of an optimal spectral shape for the
highest traffic efficiency, as shown in Fig. 3.5. This new kind of
stochastic resonance is similar to the classical effects in the sense
that the noise driving is needed to get the optimal performance
of the system. On the other hand, instead of the noise intensity,
the spectral shape (as described by k) is the SR tuning parameter,
which optimizes the performance. Note, that usually, the spectral
shape is more related to resonance effects in physics than intensity.
Musha and Higuchi [172] reported a 1/f -like noise in the traffic
current of cars on highways, so, it is particularly interesting that
the optimal traffic in our model is also found around k = 1 .

There are also nontrivial features for the neuron traffic model
when it is driven by 1/f k noise generated spikes. This time, the
introduction of the overall traffic efficiency, as the geometrical mean
of the two traffic rates, is not necessary. The mean frequency of the
outgoing spikes is a good measure of the variations in the upper
limit of information transfer rate through the system. Computer
simulations were done in a similar way and with similar conditions
as described above. The upper frequency cutoff of the spectrum
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Figure 3.6: Stochastic resonance like peak in the frequency of trans-
ferred neural spikes (solid line) versus the spectral exponent of the col-
ored noise traffic. The dotted line shows the probability of spike loss.
From L. Kish [168].

was chosen 6000 (compared with the sampling frequency of 32000),
which is equivalent to a refractory time of 5.3 (time units), char-
acterizing spike statistics of the sources of spikes. The refractory
time of the junction-neuron, which corresponds to the minimal gap
size in the car traffic model, was chosen to be 10. In Fig. 3.6, the
mean rate of transferred spikes and the probability of spike transfer
are shown. The rate of transferred spikes characterizes the highest
meaningful bandwidth of information transfer, due to Shannon’s
sampling theory. Therefore, this quantity is directly related to the
information transfer rate.

Here we can also observe a well-pronounced SSR around k = 1.
This fact is in an interesting coincidence with the general occurrence
of 1/f -like noise phenomena frequently reported in neural activity
[176] - [178], [181]. The other quantity, the spike transfer probability
characterizes the phenomenon of spike loss. The actual rate of
information transfer depends on both quantities as well as on the
unknown way of neural coding. The spike loss is the smallest at
1/f 2 noise (Brownian motion) generated spike train. However, in
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this case, the widest meaningful bandwidth of information transfer
is one order of magnitude less than it the case of 1/f noise. The
1/f noise case provides the highest spike propagation rate, though
with some compromise in the accuracy of transfer.

3.1.2 Strictly periodic input

Let us now consider a periodic main road traffic before the junction,
i.e., the cars shall arrive at times t = i Giv

−1 for i = 1, 2, .. at the
junction J (see Fig. 3.7). Here v denotes the unit velocity which
shall be set equal 1 for the sake of simplicity. Therefore the mean

G  J

i+1      i       i-1

side road

1

2

3
main road

Figure 3.7: Onset for periodic modulated incoming traffic. The in-
coming main road traffic (1→ 3) is determined by the rate ν1,3 which
is now the frequency of a periodic process.

rate of the input is given by the reciprocal of the constant gap size
G = G1 = Gi. The number N of cars entering from the side road
will then be equal for all Gi, i.e., N = N1 = N2 = .. . Hence the
mean rate ν2,3 can directly be written down using Eq. (3.2).

ν2,3(ν1,3) =
N

G
= ν1,3 INT

(

1

ν1,3 G0

)

(3.7)

This equation is the exact solution for all processes ν1,3. To discuss
the solution it is useful to introduce three lines subdividing the so-
lution space. The three lines correspond to analytic approximations
of the INT()-function. The intersections of the solution with the
lines are called modes in the following.

1. INT
(

G
G0

)

≈ G
G0

2. INT
(

G
G0

)

≈ G
G0

− 1
2

66



3. INT
(

G
G0

)

≈ G
G0

− 1

1. first mode: best ordered traffic; The gap sizes of incoming
main road cars are minimal for a certain number of side road
cars allowed to enter. There is no waste spacing between
consecutive cars which would reduce the overall number of
cars passing the junction during a certain time interval and
thus impair the overall traffic efficiency.

2. second mode: medium ordered traffic; This corresponds to an
average over all input rates and can be considered as a critical
case as it will be discussed in Sec. 3.1.3.1.

3. third mode: worst ordered traffic; The incoming traffic is or-
ganized contrarily to mode 1., i.e., the gap sizes G are in-
finitesimally smaller than multiples of G0, wasting a spacing
of (almost) G0 each time side road cars enter the main road.

Figure 3.8 illustrates this distinction.

0.01 0.03 0.05
ν      1,3

0.00
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ν   
2,3

 equation 2
 simulation
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3

Figure 3.8: Side channel mean rate ν2,3 as a response to periodic main
channel traffic with mean rate ν1,3 taken from Eq. (3.7) and simulation
(“+“ signs). The dashed lines mark the three different modes (approxi-
mations) of ν1,3: 1. best, 2. medium and 3. worst ordered traffic.
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It has been shown in Sec. 3.1.1 that the third mode of periodic
traffic is inferior to the traffic triggered by a Poisson process or
the zero crossings of 1/f k noise. Moreover it has been assumed
that there are “sites” in the main road flow which follow each other
strictly by a distance of G0. The worst periodic traffic means that
these sites are “filled” by cars in a periodic way. So the maximal
rate is reached when all sites are filled. The next, lower traffic rate
is obtained when every second site is filled. Then the next, lower
traffic rate is realized, when every third site is filled, etc. This is
a sort of “discrete periodic” case. Further-on it has to be stated
that the straight line which contains the single points of mode 3 is
a monotonously decreasing function of the main traffic rate. This
monotonous decrease holds on up to the main traffic rate where
the cross traffic rate smoothly becomes zero. This is a qualitative
behavior one can see in practice.

Note that the first mode of ordered periodic traffic can not be
exceeded by any other process in the present model. The second
mode divides the rate space into two qualitatively different regions.
That will be discussed in the next subsection.

3.1.3 Noise modulated periodic input

3.1.3.1 Gaussian white noise

The model has been modified to get a more realistic description of
the arrival times of the incoming main road traffic at the junction.
The modification consists of a random deviation around the strict
periodic position according to a Gaussian distribution with variance
D (phase noise).

To justify this approach it is worth to take a look at real traffic.
Cars pass regulation devices such as traffic lights in an almost pe-
riodic manner whereas this periodicity gets lost in time due to the
individual pattern of behavior or external reasons. 1/f k noise has
been observed in traffic flow [182], neuro systems [180] and human
coordination [183]. Taking the notations of the previous subsection,
a periodic traffic with (ν1,3, ν2,3) lying between the modes 2 and 3
can be enhanced by applying the noise in the described way. Note
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1 3

Figure 3.9: The periodic positions of the incoming (1→ 3) traffic
events with rate ν1,3 (see text and Fig. 3.7) are now perturbed by
Gaussian (colored) noise. That means it is more likely to find a small
deviation from the strictly periodic pattern discussed above, than a
large one.

that traffic corresponding to (ν1,3, ν2,3) between modes 1 and 2 can
only be diminished. In this respect, mode 2 is crucial: it separates
traffic situations where noise can be beneficial from those where its
addition only degrades the system performance.

If point (ν1,3, ν2,3) is lying between modes 2 and 3, speed mod-
ulation devices acting randomly as well as random changes of the
speed by the driver present possibilities to increase the overall traf-
fic. In case of Gi . G0 there would be no side road traffic with-
out the noise at all. This is in agreement with the paradigms of
the stochastic resonance effect where a signal is unable to cross a
threshold without additional noise. In this way the noise modulated
periodic traffic model can be seen as a temporal multi-threshold
system with equidistantly distributed thresholds i G0 (i = 1, 2, ..) .

An increase in the variance (or noise intensity D) leads to a
larger total number of cars passing the junction and thus increases
the overall traffic efficiency. The physical reason is that the time
dependent probability distribution of the events (cars) evolves from
a periodic configuration of δ-peaks to an overlap of Gaussian distri-
butions. For large D the probability distribution becomes uniform,
which explains the convergence towards mode 2 for all possible in-
put rates below and above mode 2.

The effect can be viewed in computer simulations presented in
Fig. 3.10 where the results of the modulation are plotted together
with the results obtained for the un-modulated case (D = 0).

3.1.3.2 Gaussian colored noise

How does the shape of the power spectrum of the applied Gaussian
noise influence the increase of the overall traffic efficiency?
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Figure 3.10: Simulated effect of noise modulated periodic main chan-
nel traffic. An increased noise strength D smoothes the discrete relation
between the rates ν2,3 and ν1,3. For rates ν1,3 below the second mode,
a noise enhancement for the overall traffic efficiency occurs. In the high
noise limit the curve converges to the second mode from both sides.

To answer this question further simulations have been carried
out using long range correlations in the 1/f k noise with k > 0.
The motivation for introducing 1/f k-like noise has been mentioned
above and corresponds to a widely discussed occurrence of noise
with 1/f k or 1/fk-like spectra in various fields.

Figure 3.11 shows the D-dependent increase of the rate ν2,3 for
a fixed value of ν1,3 for different values of the spectral exponent k.
A faster convergence towards mode 2 for larger values of k, i.e, for
longer correlations within the noise, can be observed. Note that a
finite number of consecutive values of the generated fractal noise
sequences have been averaged, which corresponds to a practical
application in real situations.
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Figure 3.11: Simulated side channel (road) traffic rate ν2,3 as a func-
tion of the noise intensity D. The input traffic rate has been fixed at
a value ν1,3 = 1/39 ≈ 0.025. An increased exponent k in the power
spectrum of the applied noise leads to a faster growth of the traffic rate
ν2,3 within the investigated parameter range. (Numerical units).

3.2 A Stochastic Data Packet Schedul-

ing Algorithm

As an application of the results and ideas gained by the discussed
neural spike and road traffic model, a stochastic scheduling algo-
rithm for the flow control in data packet switching networks is sug-
gested in the following. There are similar situations when there is
traffic of different priorities as it has been in the previous case by
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the introduction of a main and a side channel (road).

In the following an algorithm is developed which controls the
flow of data packages of different priorities (or importance) through
a network switch or router.

The switch decision between the fixed size data packages of dif-
ferent priorities is left over to stochastic processes with 1/f k-like
spectral characteristics, in particular to the zero crossing events
(ZCE’s) of fractal (colored) noise. It will be shown that the tuning
of the spectral parameter k allows to optimize the traffic throughput
at the switch or router.

3.2.1 Scheduling algorithms

In order to provide “fair” packet scheduling one has to consider the
fact that different classes of data traffic have an individual range of
different performance requirements in terms of bandwidth, latency,
jitter, correlations and others.

Real time video traffic requires higher bandwidth, low latency
and low jitter. Voice traffic on the other hand requires lower band-
width, low latency and low jitter. Interprocess communication in
distributed computing handles small amounts of data sets and re-
quires very low delay and small probabilities of data losses. Thus
the timing of scheduling a data package has to be dependent on its
priority. Some packages have to be allocated higher priorities than
others.

All those classes demand their specific compromise between the
individual Quality of Service (QoS) and an optimal utilization of
the available transmission bandwidth. This has to be provided by
the scheduling and routing algorithm of the server.

Often, scheduling algorithms are based on hierarchical order-
ing that allows some connections to receive guaranteed rate perfor-
mance. One method is the rate based scheduling (RBS) procedure
proposed in [185].

Rate based scheduling uses tree like structures to store packets
awaiting their turn. The transmission to the output link occurs
in frames or rounds of fixed size. The packets are queued in each
round as singly linked lists and there is an array that points to the
packets of each round. One of the round is the active one from
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which packets are removed and transmitted. Whenever the server
reaches the end of the list it moves on to the next round.

Rate control is achieved by assigning each connection a service
quantum which fixes the number of packets of that connection to
be sent per round. Jitter control is achieved by the fact that the
rounds are kept of fixed size. The server will not insert a packet
into an earlier round even if the earlier round is not full. This en-
sures that the jitter is no larger than the service quantum. Round
robin scheduling is a modification of this method and has been pro-
posed in [186]. It is suitable for the use in networks based on the
asynchronous transfer mode (ATM). In ATM the data of a file or
message to be transmitted are split up into small data packages
of fixed size to be served by the switching device. The scheme is
known under the name hierarchical round robin scheduling (HRRS).

In [186] the function of a round robin server has been described
as follows. Data packages of fixed size coming from different con-
nections are stored in corresponding buffers and its connection iden-
tifier (CID) is registered in a service list. The server then reads this
list and processes the entries in descending order. Each process has
a fixed duration and in case a file or message has not been trans-
fered completely the corresponding CID is returned to the tail of
the list. In that way some kind of fairness is guaranteed.

If the number of connections increases and the jitter becomes
large, i.e., there is a large variation in the arrival of data, the buffer
resources will not be fully utilized. Also, this scheme does not cor-
respond to the different individual performance demands in terms
of priorities as described above. Common in both, RPS and HRRS,
is that data are transmitted in packets or frames of fixed sizes.

Thus it is suggested to additionally sort the data packets by their
priorities into different connection buffers. The actual scheduling
of the different priorities is then decided by a tunable stochastic
process as proposed and described in Sec. 3.2.2.

3.2.2 A stochastic scheduling algorithm

In the HRRS based generic algorithm described above and used
in ATM networks periodic, deterministic switching is provided in
order to guarantee fairness for different connections of same prior-
ity. Using this method while serving connections or buffers with
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different priorities, however, would not be adequate. Therefore a
probabilistic switching which gives attention to the different prior-
ities is suggested.

In [168] the ZCE’s of Gaussian 1/f k noise have been applied
to trigger traffic in both neuronal junctions and road structures
consisting of a main and a side road. Several stochastic processes
have been tested there and it has been shown that, in certain cases,
the Gaussian 1/f k noise is superior in terms of maximizing the
overall traffic. The optimal spectral exponent k has been found to
be around unity. The reasons for applying such type of noise has
been motivated by experimental evidence for fractal processes in
traffic data of neural spikes and vehicles respectively.

Data packet switching networks like LAN’s or the Internet re-
veal a number of fractal properties. 1/f -like noise in packet density
fluctuations in Internet computer network traffic has been reported,
e.g., in [187] over a frequency range of 5 decades. Its importance to
the modeling, design and control of broadband networks [188] and
the implications to network performance in ATM switches have
been discussed [30]. However, no attempt in designing a router
scheduling algorithm that is itself based on a fractal stochastic pro-
cess has been found in the literature.

Thus the author proposes the serving of data packages of differ-
ent priorities to be triggered by the ZCE’s of Gaussian 1/f k noise
where the exponent k is to be tuned in order to optimize a perfor-
mance measure of the algorithm.

The scheduling algorithm works in the following way. Firstly, for
the sake of simplicity, it is assumed that the data packages can be
sorted into two classes of priorities (p1 ≤ p2), described by priority
exponents pi, i = 1, 2, only. In case of a higher number of priority
classes, the proposed scheme would have to be applied iteratively,
aligning first p1 to the highest class and p2 to all the remaining ones
and then repeat this scheme within the subclasses of p2.

In case of equality p1 = p2, an alternating switching process
would obviously be the most efficient one. However, to provide
priority biased service the weights have to be different.

The idea is the following: Whenever there was one or more
ZCE’s during the processing of any package, the next package to
be served shall be the one with the higher priority. Thus the (mean)
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gap size between consecutive ZCE’s will be the crucial value in this
scheme. Since processors can do only one job at a time, the ZCE
data set is checked after a packet is served. The binary sequence of
the logicals of ZCE’s (for different k) can to be stored on internal
memory of the scheduling device in order to guarantee a fast al-
gorithm. According to different acute network traffic conditions, k
can then be adjusted in order to yield maximal performance. This
approach is based on the results presented in [168] and has been
termed spectral stochastic resonance.

Since we study the optimal throughput we have to assume that
the individual buffers (queues) are sufficiently filled with data pack-
ets.

3.2.3 Performance measure

To measure the efficiency of the overall traffic the geometric mean
has been used in [168]. This measure has the feature to be low
in the case that any of the values to be averaged is small. This
corresponds to the fairness principles in data switching where the
optimal performance can not be achieved by serving only a selected
buffer alone. Since we sorted the incoming data traffic by their
different priorities it is also necessary to introduce a weighting of
the resulting data transmission rates. The performance measure
of the router scheduling algorithm with n priorities can hence be
defined by

En ≡
(

n
∏

i=1

vi

)
1

n

(3.8)

with the weighted rates

vi = wpi

i . (3.9)

Here, wi ≤ 1 are the transmission rates, i.e., the number of trans-
mitted data packages of the priority class i per unit time. The pi
are the priority exponents which increase with the “importance” of
the data package. They would be higher for real time video/audio
streaming and smaller for, e.g., email transfer.

For the sake of simplicity one can consider the case n = 2 and
hence

E2 ≡
√

(wp1

1 w
p2

2 ) . (3.10)
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The basic properties of “fair” data traffic are satisfied:

w1/2 → 0 ⇒ E2 → 0 (3.11)

w1/2 → w2/1 ⇒ E2 < MAX(E2) (3.12)

v1/2 → v2/1 ⇒ E2 → MAX(E2) . (3.13)

Without the loss of generality we set p1 = 2 and p2 = 1 and
assign a value of L time units for the processing of one package.
Assuming sufficiently filled buffers, the maximal data transmission
rate wmax then reads

wmax = w1 + w2 = 1/L , (3.14)

yielding a maximal performance

Emax =

√

4

27L3
(3.15)

in our example at w1 = 2
3L

and w2 = 1
3L
.

Alternatively, one may define a performance measure Ealt rang-
ing from 0 (lowest performance) to 1 (highest performance) as the
ratio of the geometric mean to the arithmetic one

Ealt ≡
(
∏n

i=1 vi)
1

n

1
n

∑n
i=1 vi

≤ 1 , (3.16)

which, again, yields its maximum in the case that all weighted rates
vi are equal

v1 = v2 = .. = vi = .. = vn . (3.17)

This follows from the fact that the geometric mean is always less
than or equal to the arithmetic mean.

3.2.4 Simulations and discussion

Numerical simulations have been carried out to study the setup
described above. Sequences of Gaussian 1/f k noise have been gen-
erated by utilizing the Fourier transform.

Firstly, uncorrelated sequences of (pseudo) random numbers
(PRN’s) have been produced by the linear congruential method
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combined with a shuffling procedure that breaks up serial correla-
tions to a considerable extent. The period of the PRN’s was in the
order of 1018. Applying the Box-Muller method [184] to those uni-
formly distributed PRN’s yielded Gaussian distributed uncorrelated
PRN’s modeling Gaussian white noise. Transforming the sequences
to the Fourier space allowed us to manipulate the power spectral
density by multiplying the sequences by the desired function. Ap-
plying the inverse Fourier transform using the (inverse) fast Fourier
transform algorithm finally provided the Gaussian distributed cor-
related PRN’s modeling Gaussian 1/f k noise to be exploited by the
algorithm.

Those sequences have then been analyzed in order to extract
the discrete sequences of logicals consisting of 1’s (ZCE) and 0’s
(no ZCE). These relatively small data sets would have to be stored
on the local memory allowing a fast access for the switching decision
to be made.

10 different logical sequences of 5× 105 unit time steps each for
18 values of k equally spaced in the interval [0, 1.7] have been evalu-
ated and the corresponding results of the performance measure Eq.
3.10 have been averaged. The plot E(k) reveals a non-monotonous
behavior of the performance while varying the spectral exponent k
(see Fig. 3.12). The optimum occurs around k = 0.8 and is depen-
dent on the data package size L, which can be scaled additionally.
Thus, after defining the package length (respectively the unit time
step), k can in practice be adjusted to maximize the efficiency of the
algorithm and hence assist to optimize the network performance. A
similar effect has been termed spectral stochastic resonance [168].

The plot in Fig. 3.12 displays a monotonous increase of the
efficiency value up to an maximum of about E = 0.0344 and an
asymptotic decrease towards the zero line for higher values of k.
This simulation result very well agrees with the calculation of the
maximal efficiency in Eq. 3.15. For large values of k, transmission
of the packages of higher priority is more and more favored, leading
to a disappearance of lower priority data packages and therewith a
diminution of the overall efficiency.

The reason for this behavior is an interaction between the depen-
dency of the gap size between consecutive ZCE’s on the correlated
noise process and the nonlinearity of Eq. 3.8. Fig. 3.13 displays
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Figure 3.12: Simulated traffic efficiency E as a function of the spectral
exponent k of the applied 1/fk noise. An optimal switching decision of
the algorithm is made around k = 0.8.

the simulated gap size distribution between two successive ZCE’s
for different values of k. Within the investigated interval, the gap
size distribution of the ZCE’s of the fractal noises seems to follow
power laws. However, an analytic solution of the time distribution
of the ZCE’s for arbitrary k values is still an unsolved problem. The
plot also reveals a higher probability for a fixed gap size to appear
in case of larger values of the spectral exponent k. It implies a
bigger mean gap size, i.e., a lower mean zero crossing rate for larger
k. This can be seen in Fig. 3.14. The mean gap size between two
consecutive ZCE’s has been found to be a monotonously increasing
function of the spectral exponent in the interval 0 < k < 1.7 as
a results of numerical simulations. Here one has to note that the
finite simulations run into difficulties for k >≈ 1.2 due to the frac-
tal character of the noise. This implies that the standard deviation
of the statistics gained by averaging 50 mean gap values for each
value of k advances to the same order of magnitude as the mean
value itself (see Fig 3.14 B).

An investigation of higher k values became meaningless. In Fig.
3.14 A, the mean gap size including its standard deviation is plot-
ted against k. As k is tuned towards larger values, the standard
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Figure 3.13: Probability distribution P (G) of distance (gap size) G
between consecutive zero crossing events of 1/f k noise for selected val-
ues of k. The legend gives the respective mean values. For numerical
parameter values see text.

deviation increases, as the mean gap size does. The noise reveals its
fractal character more explicitly and approaches the zero line more
seldom. These are the underlying reasons why this kind of stochas-
tic processes can be used to trigger the scheduling in a correlated
way and optimizes the presented algorithm.

There are publications on probabilistic and stochastic routing
considering path selection [189] or the connectivity between edges
in a complex computer network [190] often aiming at congestion
studies and control. But no suggestions has been found to trigger
the scheduling of a router as the traffic switching unit in a network
by colored noise processes which embody the same fractal prop-
erties as the network and data packet traffic itself. The difficulty
hereby is to identify the exact mechanisms leading to the fractal
network properties and in finding the appropriate way of adjust-
ing the switching units to it in order to optimize the efficiency and
supply the requiredQuality of Service. For that, more detailed mea-
sures of the efficiency would have to be defined in further studies,
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considering not only the different priorities of the individual data
packages, but also the correlations between them. This method has
a good scope for generalization. One can design stochastic engines
which can be plugged into nonlinear decision making systems like
routers and servers for maximizing some efficiency index. Thus it
is worth investigating the introduction of correlated randomness in
the multitasking decision making process.
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Figure 3.14: Mean gap size 〈G〉 (including standard deviation s) be-
tween consecutive zero crossing events of 1/f k noise in dependence on
the spectral parameter k. The standard deviation of the numerical
statistics increase dramatically while increasing k and approaches the
same value as the mean gap at k ≈ 1.1, i.e., the dashed line indicating
the standard deviation crosses the plot of the mean gap values itself
(Fig. 3.14 B).
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Chapter 4

SUMMARY & OUTLOOK

In this thesis, the question about beneficial properties of noise and
fluctuations in Nature has been asked and positively answered in
various kinds of systems, such as ferromagnetically coupled mag-
netic moments and domains or network switches like neuronal and
road junctions and data network router algorithms. All systems
have in common that they are nonlinear and that parameter varia-
tion of the applied noise, which is modeled as stochastic processes,
enhances the quality of a transmitted signal.

In case of ferromagnetically coupled Ising spins, which are ex-
posed to a weak, subthreshold periodic magnetic field and, addi-
tionally, Gaussian white magnetic noise, the phenomenon of array
enhanced stochastic resonance has been demonstrated through nu-
merical simulations. This phenomenon implies the possibility of
an enhancement of the individual stochastic resonance (SR) effect
through next-neighbors interaction of ferromagnetic type. The indi-
vidual SR effect is evident through an increase of the signal-to-noise
ratio (SNR) and the spectral power amplification of the power spec-
tral density of the time dependent magnetic moment or spin value.
Enhancing the bath temperature until an optimal temperature Topt,
as a measure of the noise intensity, synchronizes the dynamics of
the individual spin with the periodic subthreshold signal. A fur-
ther increase of the temperature above Topt only annihilates this
synchronization. But, through coupling of the above mentioned
type, a further enhancement is still possible by tuning the coupling
strength J until an optimal value Jopt is reached. It has been graph-
ically and visually shown that for every value of J exists an Topt and
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for every value of T there exists an Jopt.

A similar effect has been demonstrated in the dynamic of a fer-
romagnetic stripe domain of a thin inhomogeneous magnetic film
through numerical simulations and analytical calculations. The
stripe domain is pinned at two locations and committed to a mag-
netic double-well potential. Further, the domain is driven by ex-
ternal magnetic Gaussian white noise and weak periodic magnetic
fields. Thus the conditions for SR are given and the corresponding
maximum behavior of the SNR has been shown both, numerically
and analytically for two different types of double-well potentials.

The position of the maximum of the signal-to-noise ratio is
shifted towards smaller noise values if the stiffness of the domain is
increased. This is due to the fact that the barriers of the effective
potential (2.45) gets smaller. This effect might be used for a mea-
suring tool for the system’s parameters.

An experimental verification of the results in Bi-doped epitaxial
garnet-ferrite films should be possible. The parameters for such an
investigation are provided in the thesis.

A future work could also focus on the application of colored
noise to the ferromagnetic domain and a possible enhancement of
the SR effect. The investigation may have impact on magnetic
storage devices and/or the detection of weak magnetic signals.

Further-on, it is shown that noise, i.e., random fluctuations, can
enhance the traffic flow in a model of a junction of neural and/or
road traffic. Periodic arrangements do not always provide the opti-
mal throughput efficiency, but stochastic triggering or modulation
can be essential. This might provide the possibility to enhance the
traffic efficiency in real networks which can be described by the
presented model.

It is shown that traffic flows generated by 1/f k noises have su-
perior properties over Poissonian noise and, in certain cases, over
periodic cases too. The best properties are achieved around k = 1.
This fact is in an intriguing coincidence with the general occurrence
of 1/f -like noise phenomena in neural activity, highway car traffic
and other complex networks.

Although this model favors this kind of noise in terms of effi-
ciency, the question about the reasons of its appearance in real net-
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works like neural or road systems is still an open one. A complete
analysis of the “microscopic” mechanisms in both neural activity
and car traffic which should reveal the reasons for the macroscopi-
cally observed 1/f -like spectra remains to be done.

As a potential application of the traffic results, a stochastic
scheduling algorithm for data network switches has been proposed.
The algorithm is based on the stochastic process of zero crossings of
1/fk-noise. Thus the switch decision is not deterministic anymore,
but based on similar random and fractal properties as the network
topology itself reveals. For an efficiency measure, which includes
the rate of transmitted data packages only, a tuning of the spectral
parameter k is shown to optimize the throughput of the switch.

A future work could aim to apply the ideas to existing network
algorithm which would have to consider other performance mea-
sures as well.
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APPENDIX

A.1 Stiff and flexible ferromagnetic stripe domains

The stationary solutions (2.24) and (2.25) can be substantially sim-
plified in the limiting cases of flexible of stiff domains.

a) In the case of the first potential, we have

y(x) = ±B
{

tanh( x
x0

) for 0 < x < l/2

tanh( l−x
x0

) for l/2 < x < l
(4.1)

with

B =

√

a

b

[

1− 4 exp

(

− l

x̃0

)]

(4.2)

and the other parameters given by

k = 1− 8 exp

(

− l

x̃0

)

,

d = 8a exp

(

− l

x̃0

)

,

x0 = x̃0

[

1− 4 exp

(

− l

x̃0

)]

for a flexible domain

l À x̃0 ≡
√

2H0

a

and N = 1. For a stiff domain

l ∼= xc1 ≡ π

√

H0

a
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one gets

y(x) = ±B sin

(

x

x0

)

, (4.3)

with

B =

√

2a

b
k

(

1− k2

2

)

,

whereby

k =

√

4

3

(

l

xcl

− 1

)[

1− 1

8

(

l

xc1

− 1

)]

,

d = a(1− 2k2 + 2k4)

and

x0 =
l

π

(

1− k2

4
− 5

64
k4

)

.

In this case, a domain can become curved for l ≥ xc1, only.

b) In the case of the second potential, the stationary solution can
be approximated by

y(x) = ±b















x
l0

[

1− x
2l0
− 2 exp

(

− l
l0

)]

(a) ,

1− exp (− x
l0
)− exp (− l−x

l0
) (b) ,

l−x
l0

[

1− l−x
2l0
− 2 exp

(

− l
l0

)]

(c) ,

(4.4)

for a flexible domain (l À l0) and where the three cases are for
(a): x < l0, (b): x > l0 and l − x > l0 and (c): l − x < l0,
respectively.

For a stiff domain (l¿ l0) we get

y(x) = ±bx(l − x)/l20 . (4.5)
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A.2 Coefficients for Section 2.4.4

1. For the first potential we have obtained

S1 =
2aB2l

3k2

[

2 + k2

1 + k2
− 4x0

l
E(k)

]

,

S2 =
bB4l

3k4

[

2 + k2 − 4x0

l
(l + k2)E(k)

]

,

S3 =
x0B

k
ln

1 + k

1− k
,

Λ(1) = 2ρλ
B2l

k2

(

1− 2x0

l
E(k)

)

(4.6)

with E(k) being the complete elliptic function.

2. For the second potential we have obtained

C1 = C2 = ab2l

(

1− 2l0
l

tanh

(

l

2l0

))

,

C3 =
C1

ab
,

Λ(2) = 2ρλb2l

(

1 +
1

2
sech2

(

l

2l0

)

− 3l0
l

tanh

(

l

2l0

))

.

A.3 SNRs in the limit of stiff and flexible domains

With the estimations given in the Appendix, corresponding limiting
values of the SNR can be estimated.

It follows from Eqs. (2.41) and (2.42) that in the large stiffness
limit (l → xsorl ¿ l0), the maximal values of the SNRs and their
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corresponding noise intensities behave as

S(1)
max ∝ k−4 ∝

(

l

xs

− 1

)−2

,

D(1)
max ∝ k4 ∝

(

l

xs

− 1

)2

,

S(2)
max ∝

(

l0
l

)2

and

D(2)
max ∝

(

l

l0

)2

.

On the other hand for flexible domains l/x0 →∞ or l/l0 →∞ the

S
(1,2)
max and D

(1,2)
max approach constants, in particular

S(1)
max = 8

√
2

A2b

e2ρλa2
,

D(1)
max =

ρλa2

4b
,

S(2)
max = 4

A2

e2ρλab2
and

D(2)
max =

ρλab2

2
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