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God not only play dice, but
sometimes throws them,
where they cannot be seen.
(Stephen Hawking)
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Chapter 1

INTRODUCTION

Most of the processes occurring in Nature share two properties:
they are nonlinear and they are affected by stochastic noise. Sci-
entists usually seek to neglect those facts because the theoretical
modeling and description can get rather complicated. A linear, de-
terministic theory is preferred instead and often sufficient. But a
lot of features and phenomena can not be captured by that.

Due to the enormous increase of computational power and the
development of new physical fields, the treatment of stochastic,
nonlinear systems became easier to handle and, hence, very popular.
Special attention has been paid to effects where the stochastic noise,
or fluctuations, do not degrade the performance of a system as it is
often the case, but instead provides a useful and necessary tool to
perform signal detection, enhance signal transmission, synchronize
systems, form patterns and structures, etc. This can be the case if
the system has nonlinear characteristics.

Nonlinearity means that the underlying dynamic (differential)
equations are nonlinear in the independent variable, i.e., their typ-
ical solutions can not be expressed as a linear combination of ele-
mentary solutions. The branch of physics studying those systems
is called Complex Systems, Nonlinear Dynamics or Dynamical Sys-
tems. The next section provides a brief overview over this branch.

Stochasticity means that random fluctuations can occur bias-
ing the system in a probabilistic manner. Noise affects all kind of
natural systems, often deteriorating the predictability of the future
system state. The study of noise in physical, chemical and biolog-
ical systems has been performed in branches like Non-equilibrium
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Statistical Physics (Mechanics) and (Applied) Stochastic Processes.
The present treatise considers stochastic effects in nonlinear sys-

tems as a model of noise in physical and other systems.
In the following, short introductions are given to both fields,

Complex Systems Theory and Stochastic Processes. Since the pre-
sented work focuses mainly on details of stochastic processes, the
reader may consider the next Sec. 1.1 as an interesting trip into a
modern discipline of physics, describing the more profound frame-
work the presented phenomena should be seen in context to.

1.1 Complex Systems Theory

The study of complex systems (which not necessarily have to be
complicated) can mainly be divided in

1. the analysis of problems continuous in time and/or space, i.e.,

• nonlinear (partial) differential equations and

2. the analysis of problems discrete in time and/or space, e.g.,

• discrete mappings, (complex1) number iterations

• cellular automata.

Complex hereby does not necessarily mean that the systems have a
very high number of degrees of freedom. Complex is rather meant
as a distinction from simple systems which can sufficiently be de-
scribed by linear mathematics. An overview on literature (journals,
conference proceedings, textbooks and important papers) on this
topic can be found in a Resource Letter at [1].

1.1.1 Continuous cases

The study of nonlinear differential equations arouse more than a
century ago with problems of oscillations in classical mechanics and
electric circuits (Duffing oscillator [2], van der Pol’s equation [3]).

1Here, complex is meant in the mathematical sense as a linear combina-
tion of real and imaginary numbers, in contrast to ”complex” in the physical
terminology of complex systems.
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Figure 1.1: Chaotic oscillation: Simulation of the location X as a func-
tion of time of the nonlinear Duffing oscillator.

Driven and damped oscillation equations in various nonlinear
potentials exhibited qualitatively new kinds of solutions, such as a
dependence between amplitude and frequency of the oscillations.
The analysis of the evolution of the trajectories in the state (phase)
space discovered a topology which is more complex and exhibits
new qualitatively distinct features than in simpler linear problems.
An example for chaotic oscillation is given in Fig. 1.1.

Since a differential equation of n-th order can always be ex-
pressed as a system of n coupled differential equations of 1st order,
n is called the dimension of the state space.

Coupled ordinary linear differential equations already exhibit a
number of interesting behavior of the movement of the trajectories,
such as stable and unstable fix-points (nodes) and stable and un-
stable foci, where the trajectory will be attracted (spiral in towards
the fixpoint) or repelled (spiral away from the fixpoint).

Others, so called saddles (hyperbolic points) attract/repel tra-
jectories depending on their initial condition. In that case there is
always one trajectory separating those regions and therefore called
the separatrix. There may exist other singular points too, so called
centers (elliptic points), where the trajectories follow closed ellipses
around them. Those points are neither attractive nor repulsive.
Which of the above mentioned behaviors eventuate depends on the
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dimensions and parameters of the system determining the signs and
values of the (complex) eigenvalues.

Since the stability analysis of nonlinear solutions can (often) be
carried out by a linearization around the singular points, results for
the linear problems can be of use for the general nonlinear case as
well.

However, in the case of nonlinearities one can observe phase
transitions of the first and second kind in only one dimensional
problems, e.g., by studying a single nonlinear differential equation of
first order. An example is the kinetic description of an autocatalytic
reaction. In two dimensions bifurcations can occur. Bifurcations
are qualitative changes of the topology of the state space, caused
by parameter variation (see Fig. 1.3). For example, a stable focus
can become unstable (Hopf-bifurcation).

Figure 1.2: Different kinds of solutions in phase space of the nonlinear
Duffing oscillator as a result of different initial conditions and param-
eters. The inner closed curve on the right hand side is the analogy
to the undamped harmonic oscillator, whereas the spiral on the left
hand side corresponds to the damped case. The enveloping curve is a
characteristic example of a nonlinear oscillation.
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Figure 1.3: Bifurcation diagram of the nonlinear Duffing’s oscillator.
As a control parameter A is varied, the topology of the state space is
changed, leading to qualitatively different types of solutions. The ex-
ample shows the well studied period-doubling route to chaotic behavior
which occurs at a parameter value of about A = 5.57.

Considering three dimensions, quasiperiodic solutions called tori
can determine the ultimate destiny of the trajectories and a phe-
nomena known as chaos can occur.

In general, chaos is possible in autonomous differential equations
if at least three coupled equations are present containing at least
one nonlinearity. In case of non-autonomous system already two
(!) coupled equations are sufficient to observe chaotic behavior.
This emphasizes the importance of the systematic study of complex
systems and their specific solutions.

There are several definitions of chaos all having one feature in
common: the sensitivity of the systems development to a slight
change in the initial conditions, which can be measured by the
Ljapunov exponent.

However, chaos does not mean disorder in a stochastic sense.
The movement of the trajectory is absolute deterministic, although
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the plot of two trajectories starting nearby will reveal an exponen-
tial growth of their distance (at least for a while), demonstrating
the sensitivity to the initial conditions (see Fig. 1.4). But, in many
cases the trajectory will never leave a bounded region and end up
in a so called strange attractor (Figs. 1.4 and 1.5).

Although the path of a trajectory might be difficult to predict,
the shape of the strange attractor will always be the same, e.g.,
showing the same fractal (self similar) properties as shown in Figs.
1.5 - 1.7.

In parameter space different routes to chaos have been found.
One of the most interesting one is the so called period doubling
which is displayed in Fig. 1.3. At certain parameter values the
system oscillates with a fixed period while changing the parame-
ter suddenly leads to a doubling of this period. This can happen

Figure 1.4: The sensitivity of the path of a trajectory in state space to
its initial condition is what is called chaos in physics. Two trajectories
starting very close to each other (her indistinguishable in the small
circle), will separate exponentially from each other and finally end up
in different regions of the state space. The example, provided here, is
taken from the so called strange attractor of the meteorological Lorenz
model and suggests the shape of a butterfly. See also Fig. 1.5.
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Figure 1.5: The Lorenz attractor as an example of a so called strange
attractor. See also Fig. 1.4

when a limit cycle becomes unstable while at the same time two
stable limit cycles arise (bifurcation). A further changing of the bi-
furcation parameter doubles the period again, and so on, until the
system ends up in a chaotic region. The ratio of two consecutive
parameter values where the period doubles has been found to be a
universal scaling constant [4], [5]. If the above mentioned instability
continuous as a branch in the parameter space and hits a chaotic
region, one dramatically calls this an explosion of chaos or a crisis.

Examples of the mentioned (and to be mentioned) mechanisms
and phenomena can be found in every field of every scientist.

The study of population dynamics in ecology, i.e., the coupled
processes of growth and decay of different species concentrations,
has played a key role in the development of the field of complex
systems. The spread of epidemics, evolutionary processes, solar
systems dynamics or model deduction based on the analysis of time
series (such as financial data or electrocardiogram sequences) are
further examples.

One important consequence of nonlinearity in coupled differen-
tial equations is a principle studied by Hermann Haken in laser
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physics; it has been called slaving principle. It requires a set of
equations (variables) which evolve within different characteristic
time scales in a way that the fast varying functions can be elimi-
nated adiabatically. The result is that the time course of one vari-
able (master mode) determines the evolution of the others (slave
modes). Thus one can say that the system is ”organizing” itself
into a certain mode which for this reason is called self-organization
or synergetics [6], [7].

But nonlinear effects are of course not restricted to temporal
phenomena only. Considering the well studied reaction-diffusion
equation one can observe spatial pattern formations. All what is
needed for this observation is a diffusion besides nonlinear terms.
A hydrodynamical example is the coupling between convective mo-
tion and thermal conduction in a liquid heated from below. At a
certain value of a system parameter a hexagonal structure will ap-
pear on the surface, indicating a regular cellular structure of the

Figure 1.6: A typical example of the properties of a strange attractor.
Here, the fractal Poincaré section of the strange attractor of the Duffing
oscillator.
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Figure 1.7: Enlargement of the Poincaré section of the strange attrac-
tor from Fig. 1.6 shows fractal properties.

heat transportation within the liquid (Rayleigh-Bénard instability
[8], Lorenz model [9], Fig. 1.5).

Other examples can be found in plasma physics or chemical
reactions such as the Zhabotinsky-Belusov reaction. Here, concen-
trations in a two dimensional layer vary with space and time, form-
ing wave patterns for example as spirals [10]. Nonlinear waves are
very interesting solutions of nonlinear partial differential equations.
They do, for example, not show interference, i.e., the superposi-
tion principle is not valid here. Nonlinear waves called solitons
are stable to perturbations and can interact like particles, i.e., with
conservation of momenta and energy. Therefore a soliton can travel
infinitely long without losing the particular shape.

One of the most simple nonlinear dynamics is given by the free
motion of a particle in a bistable double-well potential, providing
two stable solutions separated by an unstable one. Depending on
the initial condition the particle will come to rest at either of the
minima. Contrary, when the particle is forced by deterministic and
stochastic forces, unexpected phenomena like dynamic stochastic
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resonance can occur, as it is introduced in this thesis in Chapt. 2.1
and 2.4.

1.1.2 Discrete cases

Often the complex behavior of a system can most easily be stud-
ied by discretization in space or time. Using the Newton-Raphson
method, for example, solutions of nonlinear equations can be found.
However, spatially and temporarily discrete problems also arise nat-
urally such as the coupled behavior of single elements often studied
as cellular automata or the discrete time analysis of iterative expres-
sions such as the logistic equation describing populations of succes-
sive generations. The latter one has become famous since despite
the simple mathematical formulation a very rich behavior could
be found, verifying experimental data such as the periodic varia-
tions in the catch reports of the Hudson Bay Company from 1850
to 1930 [11]. Feigenbaum has studied the abstract formulation in
great detail discovering periodic and chaotic behavior in the system
depending on the parameters. While the parameter is changed, the
qualitative behavior changes leading to the Feigenbaum scenario of
bifurcations. The universal scaling law, mentioned above, has been
observed for the constant ratio of consecutive bifurcation parame-
ter values [4], [5]. Many other maps have been studied such as the
Poincare map or the Henon map [12] showing fractal properties in
the corresponding attractors.

The fact that already one dimensional problems can give rise
to chaotic solutions in case of discrete nonlinear systems underlines
the importance of the detailed study of this field.

Simple rules can supply a possibility to create patterns that seem
rather complicated. Well known are the fractals of the Cantor-set,
the Koch-curve and the Sierpinsky-gasket [13]. Cellular automata
in different dimensions show similar behavior. A cellular automata
can be understood as a set of elements on a grid whereby the time
evolution of the elements depend on the state of the neighbors. Very
simple update rules for the next time step can lead to surprisingly
complex structures as shown in Fig. 1.8. Examples and applications
for the studied models can be found in all kinds of networks.

As mentioned above, a discrete description can arise from the
discrete nature of the studied objects. Examples modeled and stud-
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Figure 1.8: An example for a discrete complex system: Spatio-
temporal structure formation in a one-dimensional cellular automaton.
Very simple interaction rules between adjacent cells can lead to complex
and fractal structures.

ied in Chapt. 3.1 of the present thesis are traffic systems of cars
and neural spikes which are obviously discrete in their nature.

1.2 Stochastic Processes

1.2.1 Mathematics of stochastic processes

A stochastic process can be defined as a process Y (X, t) depending
on a random number X. This is the time dependent case of a more
general definition of a random function. As in the previous sec-
tions the time dependence can be of discrete or continuous nature.
The capital letters X and Y stand for random variables, i.e., an
ensemble of their concrete realizations which shall be denoted by
x and y. The probability that the realization y eventually will oc-
cur is described by a probability distribution function P (y). Often
the term probability density p(y) is used. Then

∫ y2

y1

p(y)dy gives

the probability to find a value y within the interval (y1, y2) in the
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continuous case.
A discrete process Y develops stepwise (..., yn−1, yn, yn+1, ...) and

is described by the probability P (yn) that yn appears at time tn.
The dependence of yn on the previous values of Y is specified by
the conditional probability P (yn|yn−1, yn−2, yn−3, ..), which is the
probability that yn appears at time tn supposed that the realiza-
tion of Y at time tn−1 was yn−1, at time tn−2 was yn−2 and so on.
Defining the joint probability P (yn, yn−1) as the probability that yn
appears at time tn and yn−1 at time tn−1 one can write down the
basic expression

P (yn, yn−1) = P (yn|yn−1)P (yn−1) , (1.1)

known as Bayes’ rule. In case that yn does not depend on yn−1, i.e.,
P (yn|yn−1) = P (yn), it follows that

P (yn, yn−1) = P (yn)P (yn−1) , (1.2)

which is the most fundamental law in probability theory and means
statistical independence of the events yn and yn−1.

1.2.1.1 Processes without memory

If the state yn of a process does not depend on the entire past, i.e.,
only on a finite number k of previous steps this process is called a
Markov process and the conditional probability reduces according
to

P (yn|yn−1, yn−2, yn−3, .., yn−∞) = P (yn|yn−1, yn−2, yn−3, .., yn−k).
(1.3)

Note that this is a general definition and defines a Markov process
of kth order. Most common in the literature is a definition which
considers only the previous time step, i.e., k = 1. This leads to

P (yn|yn−1, yn−2, yn−3, .., yn−∞) = P (yn|yn−1) . (1.4)

This definition is indeed closer to Markov’s original reflections from
1911 [14]. The process is entirely determined by the transition
probability P (yn|yn−1) and can successively be constructed. Except
for the knowledge of the last step this process has no memory.
This is the Markov property and describes the class of stochastic
processes which is the most important one in Nature:
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Markov Process Examples

• Radioactive Decay: The stochastic number of nuclei changes
according to the transition probability P (n,M, t) where M
and n are the number of pre-reaction nuclei at time 0 and time
t respectively. This discrete process does obviously depend
on the number of present nuclei only and not on the previous
past.

• Chemical Reactions: The situation for simple chemical re-
actions involving the transition between two states is similar
to the radio-active decay. Again the transition rate is pro-
portional to the number of pre-reaction atoms or molecules,
respectively.

• Spin Relaxation Model: Considering a two state system for
a single spin, i.e., two possibilities (+ and -) for the direc-
tions of a spin one can write down the stationary transition
probability and describe a system of spins as it relaxes to the
equilibrium.

• Random Walk: This is a discrete model useful to describe
Brownian motion. Here the direction at each step does not
depend on the preceding steps. Brownian motion itself is the
most important example of a Markov process in physics.

• Poisson Process: This is a point process with independent
events on a real (time) axis. The possibilities of application
in physics span over a wide range: the counts in a Geiger
counter, the arrivals at the anode of a vacuum tube or the en-
ergies of cosmic ray particles [15]. Other examples are learn-
ing processes in neural networks [16] or stochastic resonance
in neuron models [17]. The Poisson process is a special case
of a generation-recombination process having a range of in-
tegers n which are occupied by the probability pn. The time
evolution of probability density functions is described by so
called Master equations. In this case by

ṗn = ν(pn−1 − pn) . (1.5)
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Thus the time dependent probability density for the Poisson
process is given by

pn(t) =
(νt)n

n!
exp (−νt) . (1.6)

It can be shown that ν is the mean value (rate) of the time
gap between successive Poisson events as well as the variance.

As the reader will see later in this treatise, the Poisson pro-
cess with varying mean rates ν will play a major role in the
investigation of a stochastic traffic model.

To describe the time evolution of a stochastic process, two differ-
ent, but mathematically equivalent, formalisms are common in use.
The first is the Fokker-Planck equation [18], which is based on the
more general Master equation. The second formalism is based on
the Langevin equation. While the Fokker-Planck equation is a par-
tial differential equation for the evolution of the probability density
distribution, the Langevin equation is a differential equation for
the random variables. Depending on the physical situation, the
stochastic variables can enter the equation in additive or multi-
plicative terms. In this treatise we will see an example of either
possibility.

As an example for a the Lagrange equation one can take a look
at the equation of motion for a Brownian particle at position x

mẍ = −αẋ+ ξ(t) , (1.7)

with mass m, friction constant α and the random force ξ(t) having
a mean value < ξ(t) >= 0.

The two mentioned formalisms are equivalent and suitable for
linear problems but have to be handled carefully in nonlinear situ-
ations. A major problem is the integration of a stochastic (partial)
differential equation since the added stochastic process ξ(t) enters
the equations as a random number sequence y(t = nε), n ∈ N of dis-
crete nature 2. While integrating over a small time interval (t, t+ε),
the question arises which value of y should be chosen. There are
two main approaches to the problem proposed by Itô (y(t)) and
Stratonovic ( 1

2
(y(t) + y(t + ε))). For an analysis of these problems

see [15].

2The discrete character is a consequence of the Kramers-Moyal expansion
[15] of the corresponding Master equation.
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1.2.2 Stochastic processes in physics

Our most fundamental approach to describe Nature, the Quantum-
theory, is a probabilistic one containing unpredictability at its deep-
est level. The stochasticity of the radio-active decay, for example,
is a direct consequence of the quantum-mechanical formalism. Al-
though probabilities are the primary quantities which can be deter-
mined in Quantum mechanics, the macroscopic laws always appear
after integration (averaging) in Hilbert space.

This can be seen in analogy to the ensemble average in systems
with many degrees of freedom in classical mechanics, which creates
the basis for Statistical Physics3. Here one is able to deal with
high-dimensional systems with complicated inherent dependencies.

The most famous example is provided by the Brownian motion.
The force exerted by a very large number of molecules, acting on a
large particle is changing very fast and is practically impossible to
calculate using Newton’s equation of motion. On the other hand,
it is possible to average over small time intervals and reveal the
macroscopic properties of the system, such as the validity of the
damping law for the average velocity.

This is in fact the basic procedure. Considering different time
scales, one can average out the fast varying variables and obtain
equations for the remaining slow ones which establishes known
macroscopic laws, such as Ohm’s law or heat conduction. The
interesting feature of Nature is that those laws are described by
smooth functions, although they are based on the irregular micro-
scopic motion.

But it is clear that the macroscopic laws do not describe the
whole truth since they neglect the intrinsic fluctuations which ap-
pear as noise in many physical and biological systems [15].

In linear systems which are in equilibrium the random forces act
as fluctuations around a certain mean value, only. This has been
studied in equilibrium statistical mechanics and is well understood.
In contrast, the study of non-equilibrium statistical mechanics is

3The average of a high-dimensional system can be the average over an en-
semble (many different realizations of the same physical system) or the time
average of one of the realizations in case that they are the same. If so, one
calls the system ergodic. Ergodicity is the main assumption for equilibrium
statistical mechanics.
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relatively underdeveloped. A way to describe those systems is pos-
sible through the investigation of nonlinear stochastic dynamics,
which the central theme of this thesis. Identifying and understand-
ing nonlinear stochastic mechanisms and phenomena is a fruitful
challenge and promising source of knowledge for all kind of scien-
tific fields, especially solid state physics.

Figure 1.9: Brownian motion in two dimensions: fast varying, irreg-
ular, deterministic, microscopic forces acting “as random” on a meso-
scopic particle.

1.2.3 The power spectral density of noise

As introduced in subsection 1.2, stochastic processes are often char-
acterized by their probability distribution functions P (y). However,
the distribution of energy to the different frequencies ω = 2πf plays
a very important role in many physical processes and is described
by the power spectral density (PSD) S(ω). As with any time de-
pendent deterministic function, the Fourier transform can formally
be defined for a stochastic process too. Moreover it can be shown
quite easily, that the PSD for a stationary process is defined by the
Fourier transform F() of the autocorrelation function

Cy(t) y(t+τ)(τ) = lim
T→∞

1

2T

∫ T

−T

y(t) y(t+ τ) dt . (1.8)
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Using the relation between the PSD and the Fourier transform

S(ω) = lim
T→∞

1

2T
|F(C(τ))|2 , (1.9)

one can write

S(ω) = F(C(τ)) (1.10)

=
1

2π

∫ ∞

−∞

C(τ) exp(iωt) .

This is the well-known Wiener-Khintchine Theorem [19], [20].
Returning to the example of Brownian motion one can note that

the value of the force, acting on the Brownian particle is indepen-
dent on the position and velocity. Moreover the value of the force
itself is markovian, i.e., does not depend on earlier values. Thus
the autocorrelation function is a delta function:

Cξ(t) ξ(t+τ)(τ) = lim
T→∞

1

2T

∫ T

−T

ξ(t) ξ(t+ τ) dt (1.11)

= 2αkT δ(τ) .

The proportionality factor enters for consistency reasons with Eq.
(1.7) and the equipartition law

< m
ẋ2

2
>=

3

2
kT . (1.12)

Applying the Wiener-Khintchine theorem (1.10), it is now easy to
calculate the power spectral density of the force as

Sξ(ω) =
αkT

π
. (1.13)

Note that Sξ(ω) is a constant and does not depend on the fre-
quency ω. This means that the energy of the process is uniformly
distributed to all frequencies or colors (in analogy to light). There-
fore this is called white noise. Contrary to this mathematical result,
it is clear that there are physical arguments for a cut-off frequency
of the uniform spectrum. Otherwise the process would contain an
infinite amount of energy.

The result for the white noise is based on the fact that there is no
memory in the process and the correlation function of the random
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force is a delta function. However, this is not always the case.
Considering processes with relaxation times κ, usually containing
terms decaying as exp (−κt), one can find a PSD depending on ω
such as

S(ω) ∼ κ

κ2 + ω2
. (1.14)

This is called a Lorentzian spectrum and is one type of colored noise
in analogy to white noise.

1.2.3.1 1/f k noise

One type of noise is of special interest, since it appears surprisingly
often in a wide range of systems. This is a noise with a spectrum
shaped as

S(ω) =
C

ωk
, (1.15)

with C = constant and ω = 2πf . In case of k ≈ 1 it is referred to
as one-over-f-noise, flicker noise or pink noise. Figure 1.10 shows
several examples of simulated 1/f k noises for different k. The ve-
locity of Brownian motion, for example, corresponds to such noise
with k = 2.

A general overview of 1/f noise is provided by [21], [22] and [23].
As mentioned above, examples can be found in a lot of physical and
non-physical systems 4, as in solids [24]; electronic devices [25] - [27];
magnetic systems [28]; traffic flow [29], [172]; network traffic [30];
neuro systems [31], [176] - [178] and financial data [32].

Especially in solid state physics, many theories and models have
been developed and proposed to explain the 1/f -feature of residence
fluctuations [33], [34]. Based on a heuristic theory, 1/f noise can be
explained as the superposition of Lorentzians (Eq. (1.14)). Each
Lorentzian is produced by a relaxation process with a certain wait-
ing time distribution p(τ). In case of a thermally activated process
with τ = τ0 exp (E/kT ) the distribution p(τ) ∼ 1/τ arises naturally
and a noise spectrum close to 1/f is obtained. The problem con-
sists now of justifying the distribution, which is often assumed to
result from charge trapping. Random-walk models in systems con-
taining traps with broad distributions of activation energies have

4A nice bibliography on 1/fk noise can be found at
http://linkage.rockefeller.edu/wli/1fnoise/
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Figure 1.10: Simulated Gaussian noise sequences with different 1/f k-
shaped spectra.

successfully being used for that investigation [34]. Similar mecha-
nisms might be considered for the explanation of the 1/f -behavior
of other, e.g., non-physical systems.
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